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ECE330: Power Circuits & Electromechanics
Lecture 13. Energy via line integrals

Prof. Richard Y. Zhang
Univ. of lllinois at Urbana-Champaign
ryz@illinois.edu

Schedule

» Fri 3/13: Energy via line integrals

* Mon 3/16: Spring break

* Wed 3/18: Spring break

» Fri 3/20: Spring break

* Mon 3/23: Co-energy via line integrals
* Wed 3/11: Homework 6 + Review

Linear x-varying inductors
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Force of electric origin Energy & Co-energy
(This week)
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Conservative electromagnetic systems

Flux & current relations
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Force of electric origin Energy & Co-energy (Today)
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Today

» (Review) Line integrals

* Line integral definition of energy

» Example: Forces from energy

» Example: Energy from current

» Example: Energy from multi-port current

Line integral of a vector field

Image: Lucas V. Barbosa / Wikimedia

Force (vector field)
F:  wind force

Position (vector)

a:  CMI
b:  ORD
C: flight path

r(t): GPS position
Velocity (vector)
r'(t): GPS velocity

Work or energy (scalar)

Line integral: Total work done over path
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Line integral of a time-varying vector
Position  r=(x,y) r(1)
Force E=(FF)

I(t)

(Only local forces are known)

1(0)

How to compute total work done?

Closed-form solution for a line segment

Position Iy = (Xo, Yo), I1 = (X, Y1)
Force E=(FuF)
y F Ar=r; -1y
Fy - = (z1 — 0, y1 — o)
| . = (Az, Ay)
Ay ! % 11
E = |E||Ar] cost

&{ =F.Ar

I'o F A X (Fe, Fy) - (A, Ay)

Riemann line integral
ExFq-Arg +F,-Ary + Fy - Ary +

r(l)
_~a r(t)
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Path independence implies conservation
‘height displacement
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Conservative energy is a function of position =

10

Example: Gravitational force

=I5

Not conservative

Path independence:

if and only conservative  (Perpetual motion possible)

1

Example: Perpetual motion machines

Perpetual Motion?

Zero net energy
in a loop
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Today

* Line integral definition of energy

» Example: Forces from energy

» Example: Energy from current

» Example: Energy from multi-port current

Conservative electromechanical system

I(t) force output in
+ gap = x(t) direction of
§ |ncreasmg X(t)
S :
A= 10
> P = f—
v dt
JdA dz

=t—0 — 57 Energy
dt dt > over At

AE = iA) — fAzx

Closed system = Conservative
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Line integral view of stored energy

AE =iA)N— fAz X F
= (i,—f)- (AN, Az) T -
=F-Ar
Ax A£

Position r= (A, X)
Force E=(i, -f)

A/

i DA
Flux as spatial dim.
etymology for “mmf”

Current as force.

A

Conservatism implies path independence
‘ﬂux displacement

Integrate along

»/  anypath
- same energy

Energy(A1, x1) — Energy(Ag, o)

=~[g£(g)-dg:fci(/\ja")d/\Jrfof(A,:c)dﬂr
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Line integral definition of energy

Energy(A1, z1) — Energy (Ao, zo)

:‘/ng(g)-df=L-i(A,r)d)\+L—f{A,r)dr

Energy Energy
From From
Electrical Mechanical

Path independent \/
(via conservation) Path dependent

Energy(0,z) = 0

Implies no flux, no force

(Can be any constant)

Force of electric origin in a conservative
magnetic system

Theorem. If energy conserving, then
force in the direction of increasing x is

. ad
= ~ % [Energy]

and the current into the dot is

.9 By viewi
y viewing
¢ 3,\ [Enf‘rgy} current as force
Proof. By the gradient theorem
E(r) = (i,—f) = VEnergy(r)
r=(\x) O.
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Today

» Example: Energy from current
» Example: Energy from multi-port current

Computing energy from current

Energy(\, z) — Ener by def =
= [ i(N, 2")dN + f & )(LL
c O —
' B
r=QAx)

Draw magnetic circuit,

A compute reluctance & flux,

C compute flux linkage
solve for current
A

Special integration path
avoids the need to know
the force

i\ z) = (GZOT) A
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Computing energy from current

0
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Path A: Move x into position

N /* (g+ AN K.q—r) [A’)T with no flux
o Lg Ly 2y Path B: Charge the inductor

with fixed x

Computing energy from current
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N Path A: Move x into position
L [O)? ;
= [ L) "N AN = Liz) ' | == with no flux
Jo 2 g Path B: Charge the inductor
with fixed x

=%L(.r¢)’l)\2
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Interpretation as energy from electrical
by def

0
Energy(\, z) — Energy(0,0) 7o

:fcg(g).dt =L-i(A,r)d)\+W(?x

Energy Energy

From From

Electrical Mechanical
Path independent N

(via conservation) Path dependent

A
Energy (A, z) :[ i(N,z)dN
Jo

Energy in a conservative magnetic
system
Theorem. If L = dNdi > 0, then

A
Erlcx'gy()\,$)2[ PN, z)dN 9]
Jo

Corollary. If A = L(x)i and L(x)>0, then
Energy(\, z) = %L(r)*l)\‘z [

Proof.
A Energy By definition

energy is the area
A= L(X)i of the triangle

! O
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