

1

3

Schedule

- Wed 3/4: Voltage of mechanical origin
- Fri 3/6: Practical transformers (Banerjee)
- Mon 3/9: Force of electrical origin
- Wed 3/11: Quiz 5
- Fri 3/13: Energy and co-energy

2

Electromechanics via first principles

Goal is to obtain underlying insight.

Schedule
- Wed 3/4: Voltage of mechanical origin
- Fri 3/6: Practical transformers (Banerjee)
- Mon 3/9: Force of electrical origin
- Wed 3/11: Quiz 5
- Fri 3/13: Energy and co-energy

5

Today

- Transformer voltage and speed voltage
- Translational example
- Rotational example
- Two-coil example

7

9

Transformer voltage \& speed voltage

Flux linkage as a function of current and position

$$
\lambda(i, x)
$$

Time-variance is due to both current and position

If $\mathrm{dx} / \mathrm{dt}=0$, then recover inductor equation

$$
v=L(i, x) \frac{\mathrm{d} i}{\mathrm{~d} t} \quad \text { where } L=\frac{\partial \lambda}{\partial i}
$$

8

10

Today

- Transformer voltage and speed voltage
- Translational example
- Rotational example
- Two-coil example

Example 4.1 (Circuit Breaker).

Goal: Find $v(t)$ as a function of $i(t)$ and $x(t)$
Approach: Find $\lambda(\mathrm{i}, \mathrm{x})$ and differentiate
13

Example 4.1 (Circuit Breaker).

$\mathcal{R}_{1}=\mathcal{R}_{3}=\frac{g}{\mu_{o} w d}$
$\mathcal{R}_{2}=\frac{x}{\mu_{o} 2 w d}$
$\lambda=N \phi=\frac{N^{2} i}{\left(\mathcal{R}_{1} \| \mathcal{R}_{3}\right)+\mathcal{R}_{2}}$
$=\frac{2 w d \mu_{0} N^{2} i}{g+x}$

$$
v=\frac{\mathrm{d} \lambda}{\mathrm{~d} t}=\frac{\partial \lambda}{\partial i} \frac{\mathrm{~d} i}{\mathrm{~d} t}
$$

$$
+\frac{\partial \lambda}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

$$
=\underbrace{\left[\frac{2 w d \mu_{0} N^{2}}{g+x}\right] \frac{\mathrm{d} i}{\mathrm{~d} t}}_{\text {Transformer voltage }}+\frac{\left[-\frac{2 w d \mu_{0} N^{2} i}{(g+x)^{2}}\right] \frac{\mathrm{d} x}{\mathrm{~d} t}}{\text { Speed voltage }}
$$

15

Today

- Transformer voltage and speed voltage
- Translational example
- Rotational example
- Two-coil example

Example 4.1 (Circuit Breaker).

$$
\begin{aligned}
\mathcal{R}_{1} & =\mathcal{R}_{3}=\frac{g}{\mu_{0} w d} \\
\mathcal{R}_{2} & =\frac{x}{\mu_{0} 2 w d} \\
\lambda & =N \phi=?
\end{aligned}
$$

14

Example 4.1 (Circuit Breaker).

Flux as a linear function of current

$$
\lambda=L(x) i \quad L(x)=\frac{2 w d \mu_{0} N^{2}}{g+x}
$$

Then,

$$
v=\frac{\mathrm{d} \lambda}{\mathrm{~d} t}=\frac{\partial \lambda}{\partial i} \frac{\mathrm{~d} i}{\mathrm{~d} t} \quad+\frac{\partial \lambda}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

$=\frac{\left[\frac{2 w d \mu_{0} N^{2}}{g+x}\right] \frac{\mathrm{d} i}{\mathrm{~d} t}}{\text { Transformer voltage }}+\frac{\left[-\frac{2 w d \mu_{0} N^{2} i}{(g+x)^{2}}\right] \frac{\mathrm{d} x}{\mathrm{~d} t}}{\text { Speed voltage }}$

$$
=L(x) \frac{\mathrm{d} i}{\mathrm{~d} t} \quad+i \frac{\partial L}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

This is an exceptionally common structure!
16

Problem 4.2 (Reluctance motor).

Why? See homework.

$$
L(\theta)=L_{1}+L_{2} \cos (2 \theta)
$$

Goal: Transformer voltage and speed voltage Approach: Find $\lambda(\mathrm{i}, \theta)$ and differentiate

Problem 4.2 (Reluctance motor).
Flux as a linear function of current

$$
\begin{equation*}
\lambda=L(\theta) i \quad L(\theta)=L_{1}+L_{2} \cos (\tag{20}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& \begin{array}{c}
\begin{aligned}
v=\frac{\mathrm{d} \lambda}{\mathrm{~d} t}=\frac{\partial \lambda}{\partial i} \frac{\mathrm{~d} i}{\mathrm{~d} t} \quad+\frac{\partial \lambda}{\partial \theta} \frac{\mathrm{d} \theta}{\mathrm{~d} t} \\
=L(\theta) \frac{\mathrm{d} i}{\mathrm{~d} t} \quad+i \frac{\partial L}{\partial \theta} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}
\end{aligned} \\
v=\frac{\left[L_{1}+L_{2} \cos (2 \theta)\right] \frac{\mathrm{d} i}{\mathrm{~d} t}}{\text { Transformer voltage }}+\frac{\left[-2 L_{2} \sin (2 \theta) i\right] \frac{\mathrm{d} \theta}{\mathrm{~d} t}}{\text { Speed voltage }}
\end{array}
\end{aligned}
$$

Problem 4.2 (Reluctance motor).

Let $i(t)=I_{d c}$ and $\theta=(\omega / 2) t \quad$ Generates an ac voltage!

$$
v(t)=-\omega L_{2} I_{\mathrm{dc}} \sin (\omega t)
$$

What are some problems?
20

Example 4.2 (Doubly-Fed Machine)

22

Example 4.2 (Doubly-Fed Machine)

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]=\underset{\text { Matrix-valued function of } \theta}{\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]} \underset{\substack{\text { Textbook } 110-114 \\
\text { pp. }}}{\left[\begin{array}{c}
\text { and }
\end{array}\right]}} \\
& {\left[\begin{array}{l}
v_{s} \\
v_{r}
\end{array}\right]=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]\right) \quad M^{\prime}(\theta)=\frac{\partial}{\partial \theta} M(\theta)} \\
& =\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\right)\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
i_{s} \\
i_{r}
\end{array}\right]}_{\text {Transformer voltage }}+\underbrace{\left[\begin{array}{cc}
0 & M^{\prime}(\theta) \\
M^{\prime}(\theta) & 0
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{~d} t}}_{\text {Speed voltage }}
\end{aligned}
$$

Example 4.2 (Doubly-Fed Machine)

$$
\begin{aligned}
{\left[\begin{array}{l}
\lambda_{s} \\
\lambda_{r}
\end{array}\right] } & =\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \\
{\left[\begin{array}{c}
v_{s} \\
v_{r}
\end{array}\right] } & =\frac{\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]+\frac{\left[\begin{array}{cc}
0 & M^{\prime}(\theta) \\
M^{\prime}(\theta) & 0
\end{array}\right]\left[\begin{array}{c}
i_{s} \\
i_{r}
\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{~d} t}}{\text { Speed voltage }}}{} .
\end{aligned}
$$

Example: if $M(\theta)=M_{0} \cos \theta$, then

$$
\left.\begin{array}{r}
{\left[\begin{array}{c}
v_{s} \\
v_{r}
\end{array}\right]=\left[\begin{array}{cc}
L_{s} & M_{0} \cos \theta \\
M_{0} \cos \theta & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]}
\end{array} \begin{array}{l}
\text { Textbook } \\
\text { p. 114 } \\
\text { Eqn. 4.35, 4.36 }
\end{array}\right]\left[\begin{array}{cc}
0 & -M_{0} \sin \theta \\
-M_{0} \sin \theta & 0
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{~d} t}-4 .
$$

Schedule

- Wed 3/4: Voltage of mechanical origin
- Fri 3/6: Practical transformers (Banerjee)
- Mon 3/9: Force of electrical origin
- Wed 3/11: Quiz 5
- Fri 3/13: Energy and co-energy

