ECE 330 Exam 1: Spring 2019 90 minutes

Section (Check one)

1. \qquad /25
2. \qquad /25
3. \qquad /25/25

USEFUL INFORMATION
$\sin (\mathrm{x})=\cos \left(\mathrm{x}-90^{\circ}\right) \quad \bar{V}=\bar{Z} \bar{I} \quad \bar{S}=\bar{V} \bar{I}^{*}=P+j Q \quad \bar{S}_{3 \varphi}=\sqrt{3} V_{L} I_{L} \angle \theta$
$0<\theta<180^{\circ}$ (lag)
$I_{L}=\sqrt{3} I_{\varphi}$ (delta)
$\bar{Z}_{Y}=\bar{Z}_{\Delta} / 3$
$-180^{\circ}<\theta<0$ (lead)
MWF 2pm \qquad MWF 3pm \qquad
2. \qquad 5

ABC phase sequence has A at $\mathbf{0 , B}$ at $\mathbf{- 1 2 0}$, and C at $+\mathbf{1 2 0 ^ { \circ }}$

$\int \underline{H} \cdot \underline{d l}=\int \underline{J_{f}} \cdot \hat{n} d A \quad \int \underline{E} \cdot \underline{d l}=-\frac{d}{d t}\left(\int \underline{B} \cdot \hat{n} d A\right) \quad \mathcal{R}=\frac{l}{\mu A} \quad N i=\mathcal{R} \varphi$
$\varphi=B A$
$\lambda=N \varphi=L i$ (if linear)
$v=\frac{d \lambda}{d t}$
$k=\frac{M}{\sqrt{L_{1} L_{2}}}$
$1 \mathrm{hp}=746 \mathrm{~W}$

$v_{1}=L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}$

$$
a=\frac{N_{1}}{N_{2}} \quad N_{1} i_{1}=N_{2} i_{2}
$$

$v_{2}=M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}$

$$
\frac{V_{1}}{V_{2}}=\frac{N_{1}^{2}}{N_{2}}
$$

Problem 1 (25 Points)
3 single-phase loads are connected in parallel to a generator that supplies 240 V . The loads are given as:

1) A purely resistive load that consumes 100 kW
2) A load that consumes 300 kVA at a power factor of 0.8 lagging
3) A load with impedance $Z=30+j 40 \Omega$
a) What is the total power supplied by the source? (12 points)

$$
\begin{aligned}
& \bar{S}_{1}=100 \angle 0^{\circ} \mathrm{kVA} \\
& \theta_{2}=\cos ^{-1}(0.8) \Rightarrow \theta_{2}=36.87^{\circ} \\
& \bar{S}_{2}=300 \angle 36.87^{\circ} \mathrm{kVA} \\
& \bar{Z}_{3}=30+j 40 \Omega \\
&=50 / 53.13^{\circ} \Omega \\
& \bar{V}=\bar{Z}_{3} \bar{I}_{3} \Rightarrow \bar{I}_{3}=\frac{\bar{V}}{z_{3}} \\
& \bar{S}_{3}=\bar{V} \bar{I}^{*}=\frac{V^{2}}{\bar{z}^{*}} \Rightarrow \bar{S}_{3}=\frac{240^{2}}{50 L-53.13^{\circ}} \Rightarrow \widehat{S}_{3}=1.152 / 53.13^{\circ} \mathrm{kVA}
\end{aligned}
$$

$$
\begin{aligned}
\bar{S}_{\text {TOT }}= & \bar{S}_{1}+\bar{S}_{2}+\bar{S}_{3} \\
= & (100+j 0)+(240+j 180) \\
& +(0.691+j 0.922) \\
\bar{S}_{\text {TOT }}= & 340.691+j 180.922 \mathrm{kVA} \\
= & 385.75 / 27.97^{\circ} \mathrm{kUA}
\end{aligned}
$$

b) What is the source current? (5 points)

$$
\begin{aligned}
& \bar{S}_{\text {ToT }}=\overline{V I}_{s}^{*} \\
& \bar{I}_{s}^{*}=\frac{S_{\text {FrI }}}{\bar{V}} \Rightarrow \begin{array}{l}
\bar{I}_{s}^{*}=1607.3 \angle 27.97^{\circ} \mathrm{A} \\
\bar{I}_{s}=1607.3 \angle-27.97^{\circ} \mathrm{A}
\end{array}
\end{aligned}
$$

c) A capacitor is connected in parallel with the loads. How much power should it supply to achieve an overall power factor of 0.975 lagging? (8 points)

$$
\begin{gathered}
\theta_{n}=\cos ^{-1}(0.975) \\
\theta_{n}=12.84^{\circ} \\
Q_{n}=P \tan \left(\theta_{n}\right) \\
Q_{n}=77.65 \text { kUAR } \\
Q_{n}=Q_{\text {old }}+Q_{c} \\
Q_{c}=Q_{n}-Q_{\text {old }} \Rightarrow Q_{c}=-103.272 \text { kNAR } \\
103.272 \text { kNAR of capacitance }
\end{gathered}
$$

Problem 2 (25 points)

Three 3-phase loads are connected in parallel to a wye-connected source with 480 V line to line. The loads are given as:

1) A wye connected load consuming 250 kVA at a 0.707 lagging power factor
2) A wye connected load consuming 75 kW at a 0.9 lagging power factor
3) A delta connected load with impedance $Z=100+j 100 \Omega$
a) What is the total line current supplied by the source? (13 points)

$$
\begin{aligned}
& \bar{S}_{1}=250 \angle 45^{\circ} \mathrm{KVA} \\
& P_{2}=S_{2}\left(F_{2}\right) \Rightarrow S_{2}=\frac{P_{2}}{P F_{2}} \Rightarrow S_{2}=83.33 \mathrm{KVA} \quad \theta_{2}=\cos ^{-1}(0.9) \Rightarrow \theta_{2}=25.84 \\
& \bar{S}_{2}=83.33 / 25.84^{\circ} \mathrm{kUA} \\
& \bar{I}_{\phi_{3}}=\frac{\bar{V}_{2}}{Z_{3}} \Rightarrow \bar{I}_{\phi_{3}}=3.39 /=45^{\circ} \mathrm{A} \\
& s_{3}=3(480)(3.39) \angle 45^{\circ} \Rightarrow \quad \bar{S}_{3}=4.882 / 45^{\circ} \mathrm{kVA} \\
& \begin{aligned}
\bar{S}_{\text {IO }} & =\bar{S}_{1}+\bar{S}_{2}+\bar{S}_{3} \\
& =(176.78+j 176.18)+(75+j 36.32)+(3.45+3 \text {. oJ } k V A
\end{aligned} \\
& \bar{s}=255.26+j 216.55 \mathrm{kVA} \\
& \begin{aligned}
& \bar{S}_{\text {TOT }}=334.72 \angle 40.31^{\circ} \mathrm{KVA}= \sqrt{3} V_{L} I_{L} \angle \theta \\
& \bar{I}_{L}=402.61 /-40.31^{\circ}
\end{aligned}
\end{aligned}
$$

b) A delta connected capacitor bank is added in parallel to the three loads to make the overall power factor 0.99 lagging. What is the new line current? (12 points)

Problem 3 (25 Points)

A coil is wound 150 times around an iron core (dimensions given above) with relative permeability 2500 that has an air gap g of 20 mm and depth into the page of 3 cm . With the voltage polarity and current direction as defined above:
a) What is the reluctance path length inside the iron core? (7 points)

$$
\begin{gathered}
9+9+8=26 \mathrm{~cm} \\
1+1+8=10 \mathrm{~cm} \\
l_{c}=36 \mathrm{~cm}
\end{gathered}
$$

b) Draw the magnetic equivalent circuit and determine the reluctance values for the iron and air gap (neglect fringing). (8 points)

$$
\begin{aligned}
& R_{c}=\frac{l_{c}}{\mu_{0} \mu_{r} A} \Rightarrow R_{c}=1.910 \times 10^{5} \mathrm{At} / \mathrm{\omega b} \\
& A=6 \mathrm{~cm}^{2} \\
& R_{g}=\frac{g}{\mu_{0} A} \Rightarrow R_{g}=2.65 \times 10^{7} \mathrm{At} / \mathrm{Wb}
\end{aligned}
$$

c) What is the inductance of the coil? (10 points)

$$
\begin{aligned}
& \phi=\frac{N_{i}}{2 R_{g}+R_{c}} \\
& \phi=2.82 \times 10^{-6} i \\
& \lambda=N \phi \\
& \lambda=0.423 \times 10^{-3} i=L i \\
& L=0.423 \mathrm{nH}
\end{aligned}
$$

Problem 4 (25 Points)

Two coils are wrapped around an iron core with infinite permeability as shown. Coil 1 has 200 turns while coil 2 has 100 turns. The air gap g is 10 mm and the depth into the page is 3 cm . Neglect fringing.
a) Put the dot markings on the two coils. (5 points)
b) What is the self-inductance of the two coils, the mutual inductance, and the coefficient of coupling k ? (5 points each $=20$ total points)

$$
\begin{aligned}
& \frac{N_{1} i_{1}-\frac{1}{2} N_{2} i_{2}=\phi_{1}}{3 \mathrm{Rg}} \Rightarrow \phi_{1}\left(N_{1} i_{1}-\frac{1}{2} N_{2} i_{2}\right) \\
& \phi_{2}=\phi_{2}=\frac{-\frac{2}{3} N_{1} i_{1}+\frac{4}{3} N_{2} i_{2}}{4 \mathrm{Rg}} \Rightarrow \phi_{2}=-3.71 \times 10^{-6 i_{1}}+3.7 \times 10^{-6} i_{2} \\
& M 1
\end{aligned}
$$

$\lambda_{1}=N_{1} \phi_{1}=1.508 \times 10^{-3} i_{1}-0.371 \times 10^{-3} i_{2}$ $\lambda_{2}=N_{2} \phi_{2}=-0.37 \times 10^{-3} i_{1}+0.371 \times 10^{-3} i_{2}$

$$
\begin{aligned}
& N_{1} i_{1}=R g \phi_{1}+2 R g\left(\phi_{1}+\phi_{2}\right)+R_{g} \phi_{1} \Rightarrow N_{1} i_{1}=4 \mathrm{Rg} \phi_{1}+2 R g \phi_{2} \\
& N_{2} i_{2}=R_{g} \phi_{2}+R g\left(\phi_{1}+\phi_{2}\right)+R g \phi_{2} \Rightarrow N_{2} i_{2}=2 R g \phi_{1}+4 \operatorname{Rg} \phi_{2} \\
& \phi_{2}=\frac{N_{2} \dot{i}_{2}-2 R g \phi_{1}}{4 R g} \\
& N_{1} \dot{C}_{1}=4 \operatorname{Rg} \phi_{1}+\frac{1}{2}\left(N_{2} \dot{U}_{2}-2 \operatorname{Rg} \phi_{1}\right) \\
& \begin{array}{l}
N_{1} i_{1}=3 R g \phi_{1}+\frac{1}{2} N_{2} i_{2} \\
N_{1} i_{1}-\frac{1}{2} N_{2} i_{2}=\phi_{1} \Rightarrow \phi_{1}=7.54 \times 10^{-6} i_{1}-1.88 \times 10^{-6} i_{2}
\end{array}
\end{aligned}
$$

