Synchronous machines.
Consists of a stator (a static part) and ar rotor (a rotating part).
Both stator and rotor has windings or coils carrying currents.
$\left.\begin{array}{c}\text { Thumb } \\ \text { rile }\end{array}\right\}$ coils/windings on $=\begin{aligned} & \text { \# phases of } \\ & \text { stator }\end{aligned}$
Agenda:

- Inductance of the
(1) Derive $\hat{\lambda}=L(\theta) \frac{i}{\lambda}$ cols in a matrix

Vectors with as many elements as the \#coils.
A $\lambda=L(\theta) \underline{i} \Rightarrow$ Circuit is electrically linear.
(2) Derive co-energy $\omega_{M}^{\prime}(\underline{i}, \theta)=\frac{1}{2} \underline{i}^{T} L(\theta) \underline{i}$
(3) Derive torque of electrical origin

$$
T^{e}(\underline{i}, \theta)=\frac{\partial \omega_{m}}{\partial \theta}
$$

Think of a turbine in
a hindroelectic generator.
(5) Derive electrical equation
If the currents $\frac{i}{}$ are into the systems.

$$
\begin{aligned}
& \underbrace{v_{\text {cross }}}_{\text {coil }}=\underbrace{2_{\text {coil }}^{0}} R_{\text {coil }}+\frac{d}{d t} \underbrace{\lambda_{\text {coil }}}_{l} \\
& \begin{array}{l|l|l}
\text { voltage across } \\
\text { any ofstance in the coils } & \longrightarrow \\
\text { that coil } & \\
& \text { flux linkage } \\
& \text { in that col.. }
\end{array} \\
& \text { Current in the } \\
& \text { corresponding coil }
\end{aligned}
$$

(6) Understand steady-state operation with sinusoidal currents
\because
$\theta=0$. No angular acceleration

$$
\Rightarrow \quad 0 \quad \omega_{s}\left(\begin{array}{l}
\text { A cynchronongs frequency } \\
\text { is maintained } \\
\text { throughout }
\end{array}\right)
$$

What do we want to compute in $\frac{\text { steady-state? }}{\text { Worser input. }}$
(1) Compute the mechanical power input required to maintain steady-state.
(2) Compute aw equivalent circuit for the synchronous machine.

Today's class $\left\{\begin{array}{l}\text { Assume we know } \lambda=L(\theta) \underline{\imath} \\ \text { for } 1 \phi, \text { and } 2 \phi \text { machines. }\end{array}\right.$ Compute mechanical power inper't
at steady-staté at steady-state
How to deceive $\lambda=L(\theta)$ i for
Next class $1 \phi, 2 \phi$ machines, and even $3 申$ round-roter machines-
(2) Find equivalent circuits for

Single phase machines.
In this class, we shall not derive the $\hat{n}=L(\theta) \underline{n}$ description
But, we did derive it in aw earlier lecture.

$$
\left\{\begin{array}{l}
\lambda_{S}=N_{S}^{2} L_{0} i_{S}+N_{S} N_{r} L_{0}\left(1-\frac{|2 \theta|^{2}}{\pi}\right) i_{r} \\
\lambda_{r}=N_{S} N_{r} L_{0}\left(1-\frac{|2 \theta|}{\pi}\right) i_{S}+N_{r}^{2} L_{0} i_{r}
\end{array}\right.
$$ be show w by consoles of 0 .

approximately equal to"

$$
\begin{aligned}
& \lambda_{S}=L_{S} i_{S}+M \cos \theta i_{r} \\
& \lambda_{r}=M \cos \theta i_{S}+L_{r} i_{r} ;
\end{aligned}
$$

where toe have folded Lo" lr, N_{s}, N_{r} into Bur new constants L_{s}, L_{r}, M.
over the stator/rotor
Remark: The coils caw be distributed a to make this approximation exact.

- Computing $W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right)$.

$$
\begin{aligned}
W_{m}^{\prime}\left(i_{s}, i_{r}, \theta\right) & =\frac{1}{2}\binom{i_{s}}{i_{r}}^{T}\left(\begin{array}{cc}
L_{s} & M \cos \theta \\
M \cos \theta & L_{r}
\end{array}\right)\binom{i_{s}}{i_{r}} \\
& =\frac{1}{2} L_{s} i_{s}^{2}+\frac{1}{2} L_{r} i_{r}^{2}+M \cos \theta i_{s} i_{r}
\end{aligned}
$$

- $T^{e}\left(i_{s,}, i_{r}, \theta\right)=\frac{\partial W_{m}^{r}}{\partial \theta}=-M \sin \theta \cdot i_{s} i_{r}$.
- Mechanical equation

$$
J \ddot{\theta}=T^{e}+T^{m}-T^{f}
$$

assume frictionless

$$
\Rightarrow T^{R}=0
$$

$$
=-M \sin \theta i_{s} i_{r}+T^{m}
$$

torque from mechanical governor
Steady-state $w /$ sinusoidal currents.

$$
\left.\begin{array}{rl}
\left\{\begin{aligned}
i_{s}= & I_{s} \cos \left(\omega_{s} t\right), \quad i_{r}=I_{r} \cos \left(\omega_{r} t\right) \\
& \theta=0, a n \partial \quad \theta
\end{aligned}\right)=\omega_{m} t+r . \\
\Rightarrow \quad T^{m} & =M \sin \left(0_{m} t+r\right) I_{s} \cos \left(\omega_{s} t\right) I_{r} \cos \left(\omega_{r} t\right) \\
& =I_{s} I_{r}\left[\sin \left(\omega_{1} t+r\right)+\sin \left(\omega_{2} t+r\right)\right. \\
+\sin \left(\omega_{3} t+r\right)+\sin \left(\omega_{4} t+r\right)
\end{array}\right] .
$$

where $\omega_{1}=\omega_{m}+\omega_{s}-\omega_{r}$,

$$
\begin{aligned}
& w_{2}=w_{m}-w_{s}+w_{r} \\
& w_{3}=w_{m}+w_{s}+w_{r} \\
& w_{4}=w_{m}-w_{s}-w_{r}
\end{aligned}
$$

Derivation ow
next page
Skip it ow first reading
of the notes

Messy derivation

$$
\begin{aligned}
& \sin \left(\omega_{n} t+\gamma\right) \cos \left(\omega_{s} t\right) \cos \left(\omega_{r} t\right) \\
& =\frac{1}{2} \sin \left(\omega_{m} t+\gamma\right)\left[\cos \left(\omega_{s}+\omega_{r}\right) t+\cos \left(\omega_{s}-\omega_{r}\right) t\right] \\
& =\frac{1}{2}\left[\sin \left(\omega_{m} t+\gamma\right) \cos \left(\omega_{s}+\omega_{r}\right) t\right] \\
& +\frac{1}{2}\left[\sin \left(\omega_{m} t+\gamma\right) \cos \left(\omega_{s}-\omega_{\gamma}\right) t\right] . \\
& =\frac{1}{4}\left[\begin{array}{l}
\sin \left(\omega_{m} t+r+\omega_{s} t+\omega_{r} t\right) \\
+\sin \left(\omega_{m} t+r-\omega_{s} t-\omega_{r} t\right)
\end{array}\right] \\
& +\frac{1}{2}\left[\sin \left(\omega_{m} t+\gamma+\omega_{s} t-\omega_{r} t\right)\right. \\
& \begin{array}{c}
\left.+\sin \left(\omega_{m} t+r-\omega_{s} t+\omega_{\gamma t}\right)\right] \\
=\omega_{3}
\end{array} \\
& =\frac{1}{\Delta}\left[\sin \left(\sqrt{\left.\left.\omega_{m}+\omega_{s}+\omega_{r}\right) t+r\right)}=\frac{\omega_{3}}{=\omega_{4}}\right]\right. \\
& +\frac{1}{4}\left[\sin \left(\omega_{m}\left(\omega_{m}-\omega_{5}-\omega_{r}\right)++\gamma\right)\right] \\
& +\frac{1}{4}\left[\sin \left(\sqrt{\left.\left(\omega_{m}+\omega_{s}-\omega_{r}\right) t+r\right)}-\begin{array}{c}
=\omega_{2} \\
=\omega_{2}
\end{array}\right]\right. \\
& \begin{array}{l}
4 \\
+\frac{1}{4}\left[\sin \left(\left(\omega_{m}-\omega_{s}+\omega_{\gamma}\right) t+\gamma\right)\right] .
\end{array}
\end{aligned}
$$

If $\omega_{1} \neq 0, \omega_{2} \neq 0, \omega_{3} \neq 0, \omega_{4} \neq 0$,
then $\left\langle T^{m}\right\rangle=0$.
If average torque $=0$ in steady-state, then, so is average mechanical power input.
Can you make a maclime act as a generator or motor if average mech power $=0$?

$$
\begin{array}{ll}
\\
\Rightarrow \omega_{i} \neq 0 \text { for } i=1,2,3,4 \text { is }
\end{array}
$$

aw uninteresting case.

- If one of the w_{i} 's are zero, then other ω_{j}^{\prime} 's are not zero for $j \neq i$

For example,

$$
w_{1}=0 \Rightarrow w_{2} \neq 0, w_{3} \neq 0, \quad w_{4} \neq 0
$$

$\Rightarrow T^{m}$ has to be time-vanying to operate machine in steady state! Difficult to produce

Qum 2-ф machines.
Queldections In next class, we shall learn how the $\underline{\lambda}=L(\theta) \underline{i}$ relations are obtained!.

In this class, we shall take them as given, and proceed to understanding steady-staté operation with sinusoid currents.

$$
=2(\theta)
$$

- $W_{m}^{\prime}\left(i_{a s}, i_{b s}, i_{a v}, i_{b v-}, \theta\right)$

$$
\begin{aligned}
= & \frac{1}{2} i^{\top} L(\theta) \underline{i} \\
= & \frac{1}{2} L_{s} i_{a s}^{2}+\frac{1}{2} L_{s} i_{b s}^{2}+\frac{1}{2} L_{r} i_{a r}^{2}+\frac{1}{2} L_{r} i_{b r}^{2} \\
& +M \cos \theta\left(i_{a s} i_{a r}+i_{b s} i_{b r}\right)+M \sin \theta\left(i_{b s} i_{a r}-i_{a s} i_{b r}\right)
\end{aligned}
$$

- $T e=\frac{\partial \omega_{m}{ }^{\prime}}{\partial \theta}$

$$
=-M \sin \theta\left(i_{a s} i_{a r}+i_{b s} i_{b r}\right)+M \cos \theta\left(i_{b s} i_{a r}-i_{a s} i_{b r}\right)
$$

Mechanical equation:

$$
\begin{aligned}
& J \ddot{\theta}=T^{e t}+\underbrace{T^{m}}-T_{\text {assume frictionless }}^{T^{f}} \Rightarrow T^{f}=0 \text {. } \\
& \text { Ne torque frow mechanical governor } \\
& \text { Calculated this. }
\end{aligned}
$$

- Steady-state under sinusoidal currents

$$
\begin{aligned}
& \dot{\theta}=0 \Rightarrow \dot{\theta}=\omega_{m} \Rightarrow \theta=\omega_{m} t+r \\
& i_{a s}=I_{s} \cos \left(\omega_{s} t\right), \quad \text { 需 } \quad i_{b s}=I_{s} \sin \left(\omega_{s} t\right) \\
& i_{c r}=I_{r} \cos \left(\omega_{r} t\right), \quad i_{b r}=I_{r} \sin \left(\omega_{r} t\right)
\end{aligned}
$$

A Also $T^{m}=-T^{e}$.
It turns out that $T^{m}=M I_{s} I_{r} \sin \left[\left(\begin{array}{c}\omega_{m}-\omega_{s}+\omega_{r} \\ +\gamma\end{array}\right] t\right.$
Derivation is ow the next page. Skip it on first reading?

$$
\begin{aligned}
& T^{m}=-T^{e}
\end{aligned}
$$

$$
\begin{aligned}
& -\cos \left(\omega_{m} t+\gamma\right)\{\underbrace{\sin \omega_{s}+\underbrace{\sin }_{\text {from-i }} \omega_{r} t}_{\text {from } i_{b s}}-\underbrace{\cos \omega_{s}+}_{\text {from } i_{a s}} \underbrace{\sin \omega_{r}}_{\text {from } i_{b r}}+\}
\end{aligned}
$$

Use the formulae:

$$
\begin{aligned}
& \cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta) \\
& \sin \alpha \cos \beta-\cos \alpha \sin \beta=\sin (\alpha-\beta) . \\
\because T^{m}= & M I_{s} I_{r}\left[\sin \left(\omega_{m} t+\gamma\right) \cos \left(\omega_{s} t-\omega_{r} t\right)\right. \\
& \left.-\cos \left(\omega_{m} t+\gamma\right) \sin \left(\omega_{s} t-\omega_{r} t\right)\right] \\
= & M I_{s} I_{r} \sin \left(\omega_{m} t+\gamma-\omega_{s} t+\omega_{r} t\right) \\
= & M I_{s} I_{r} \sin \left[\left(\omega_{m}-\omega_{s}+\omega_{r}\right) t+\gamma\right] \\
& {[(1)}
\end{aligned}
$$

What is the qualitative difference between $T_{\text {or } T^{m}}^{e} m$ 1- ϕ and $2-\phi$? Think e $\left.\right|_{6}$.

$$
\left\langle T^{m}\right\rangle= \begin{cases}M I_{s} I_{r} \sin \gamma, & \text { if } \omega_{m}-\omega_{s}+\omega_{r}=0, \\ 0, & \text { othertewese. }\end{cases}
$$

What about instantaneous forge.

$$
T^{m}=\left\{\begin{array}{l}
M I_{s} I_{r} \sin \gamma, \quad \text { if } \omega_{m}-\omega_{s}+\omega_{r}=0, \\
M I_{s} I_{r} \sin \left(\left(\omega_{m}-\omega_{s}+\omega_{r}\right)^{+}+\gamma\right), \text { otherwise. }
\end{array}\right.
$$

Frequency condition: $\quad \omega_{m}-\omega_{s}+\omega_{r}=0$
$\Rightarrow \int T^{m}$ (instantaneous torque required to maintain steady-stalt operation)

$$
=M I_{s} I_{r} \sin \gamma(a \operatorname{constant} 1)_{0}^{\prime}
$$

Also, $\left\langle T^{m}\right\rangle=M I_{s} I_{r} \sin \gamma$, which is ar mon-zero torque.
$\left.\begin{array}{rl}\Rightarrow \text { Average mech power input } \\ \text { plow the governor }\end{array}\right\}=T^{m} \omega_{m}$

Last class, we studied the expressions for T^{e} in $1 \phi, 2 \phi$ machines.

$\left.\begin{array}{r}\text { Summary of } \\ \text { Calculations for } \\ 2 \phi \text { machines }\end{array}\right\} \Rightarrow\left\{\begin{array}{r}T^{e}=\left\langle T^{e}\right\rangle=-M I_{s} I_{r} \sin \gamma, \\ \text { when } i_{a_{s}}=I_{s} \cos \omega_{s} t, i_{b_{s}}=I_{s} \sin \omega_{s} t, \\ i_{d r}=I_{r} \cos \omega_{r} t, i_{b_{r}}=I_{r} \sin \omega_{r} t,\end{array}\right.$

$$
\begin{aligned}
& \theta=\omega_{m} t+\gamma_{1} \\
& \omega_{m}=\omega_{s}-\omega_{r}
\end{aligned}
$$

(1) Derive equivalent circuit for 2ϕ-machines.
(2) Get a feel for how the $\lambda-i$ relationship, are derived for $1 \phi, 2 \phi, 3 \phi$ machines.
2ϕ machines:-
(-We begin with $\underline{\lambda}=L(\theta)$ i
(2) Write electrical equation
(3) Manipulate it to get a circuit out of it-
$\underline{\lambda}=L(\theta) \underline{i}$ for 2ϕ machines look like:
Recall:

$$
\begin{aligned}
& \left(\begin{array}{l}
\lambda_{a s} \\
\lambda_{b s} \\
\lambda_{a r} \\
\lambda_{b r}
\end{array}\right)=\left(\begin{array}{cccc}
L_{s} & 0 & M \cos \theta & -M \sin \theta \\
0 & L_{s} & M \sin \theta & M \cos \theta \\
M \cos \theta & M \sin \theta & L_{r} & 0 \\
-M \sin \theta & M \cos \theta & 0 & L_{r}
\end{array}\right)\left(\begin{array}{c}
i_{a s} \\
i_{b s} \\
i_{a r} \\
i_{b r}
\end{array}\right) . \\
& \lambda_{a s}
\end{aligned}=L_{s} i_{a s}+M \cos \theta i_{\phi p r}-M \sin \theta i_{b r} .
$$

Electrical equation:

Let's derive this:.

$$
\begin{aligned}
& =R_{s} I_{s} \cos \left(\omega_{s} t\right)+\frac{d}{d t}\left[L_{s} I_{s} \cos \omega_{s} t\right] \\
& + \text { Repair } \frac{d}{d t}\left[M I_{r} \cos \left(\omega_{s} t+\gamma\right)\right] \text {. } \\
& =R_{S} I_{s} \cos \omega_{s} t-\omega_{s} L_{s} I_{s} \sin \omega_{s} t-\omega_{s} M I_{r} \sin \left(\omega_{s} t+r_{1}\right) \\
& =\operatorname{Re}\{\sqrt{2} \cdot R_{s} \cdot \overbrace{\frac{I_{s}}{\sqrt{2}} \not \mathcal{L a}_{0}}^{=I_{a s}} \cdot e^{j w_{s} t}\}
\end{aligned}
$$

Verify these 3 terms!.

$$
=\operatorname{Re}\left\{v_{2} \cdot\left(R_{s} \bar{I}_{a_{s}}+j X_{s} \bar{I}_{a_{s}}+\bar{E}_{a_{r}}\right) \cdot e^{j \omega_{s}+}\right\}
$$

Wait! The above looks like the time-dowain signal for the phasor $R_{s} \bar{I}_{a s}+j X_{s} \bar{I}_{a s}+\bar{I}_{a r}$.

- Associate phasor to Vas: Call it $\bar{V}_{\text {as }}$

$$
\therefore \bar{V}_{a_{s}}=R_{s} \bar{I}_{a_{s}}+j X_{s} \bar{I}_{a_{s}}+\bar{E}_{a r}
$$

- Notice: this egration is the same as the relation between these quantities in the following circuit

Equivalent cirmit for a 2ो synchronous machine.
Salient points. :

- $\rangle=$ symbol for a
variable voltage source
why variable? $\left|\bar{E}_{\text {ar }}\right|$ varies with Ir.
the direct current into rotor windings.
- If we connect stator phases to external circuit, say to a load, now we can analyze it by drawing the equiv. let.

Next topic:-
How are $\underline{\lambda}=L(\theta) \underline{i}$ relations derived in rotating machines?.
$\left.\begin{array}{l}\text { (1) Ampere's law } \\ \text { (2) Superposition } \\ \text { (3) Simusoidal approximation }\end{array}\right\} \Rightarrow \begin{aligned} & \text { yields } \vec{H} \text {, the } \\ & \text { magnetic field intensity } \\ & \text { in the air -gap. }\end{aligned}$
(4) $\vec{B}=\mu_{0} \vec{H}$ in air-gap
(5) Compute flux linkage using $\oint \vec{B} \cdot d \vec{a}$.

Skep (1), (2, (3)

Standing assumptions:-
(1) $g \ll$ radius of
(2) \vec{H} is radial in the air -gap.
Loop 1: Ampere's law around loop -1 yields

$$
\begin{aligned}
H(\psi)= & \text { cont. for } \\
& \psi \in(0, \pi)
\end{aligned}
$$

and $H(\psi)=$ cons. for

$$
\psi \in(\pi, 2 \pi) .
$$

Do the details yourself?

Loop 2:-
$\oint_{l o p} \vec{H} \cdot d \vec{l}=$ current coming "out" of loop 2 .
$\left\{\begin{array}{lll}\text { Let } H(\psi)=H_{1} & \text { for } & 0 \leqslant \psi<\pi \\ \text { and } & H(\psi)=H_{2} & \text { for } \\ & \pi<\psi<2 \pi\end{array}\right\}$

$$
\therefore \oint_{\operatorname{loop} 2} \bar{H} \cdot d \bar{I}=\left(H_{2}-H_{1}\right) \cdot g
$$

Current coming "out" $=-N_{s}$ is.
of $\operatorname{los} \$ 2$

$$
\Rightarrow \quad H_{2}-H_{1}=-\frac{N_{s} i_{s}}{g}
$$

- Claim: $\left.\quad H_{1}+H_{2}=0\right\}$

Can be argued from
(1) Symmetry
(2) Gauss' law
(3) Right-hand

- Solve $\quad H_{2}-H_{1}=-N_{s}$ is /g $\}$
and $H_{1}+H_{2}=0$

$$
\Rightarrow \quad H_{1}=\frac{N_{s} i_{s}}{2 g}, \quad H_{2}=-\frac{N_{s} i_{s}}{2 g} .
$$

- Use superposition if you aherve multiple coil.

Sinusoidal approximation.

$$
H(\psi)= \begin{cases}\frac{N_{s} i_{s}}{2 g}, & 0<\psi<\pi \\ -\frac{N_{s} i_{s}}{2 g}, & \pi<\psi<2 \pi\end{cases}
$$

Replace it with its, dominant "Fourier" mode.

Q. If $i_{s}=I_{s} \cos \omega_{s} t_{0}$ or $i_{s}=I_{s} \sin \omega_{s} t$, $H(\psi)$ is a pulsating function.

- Position of max. remains const
- Maximum value changes with time.

Example:

N_{s} turns in both set of windings.

Q1. Find $H(\psi)$ for $0 \leq \psi \leq 2 \pi$.
Q 2. Find its sinusoidal approximation
Q3. If $T_{a_{5}}=I_{s} \cos \omega_{s}+$

$$
\hat{n}_{b s}=I_{s} \sin \omega_{s} t,
$$

find $H(\psi)$ as a function of time. Also, comment whether it's pulsating.

Sol ${ }^{n}$:
Due to $i_{s s:}$

Due to

Tue to both ting and iss.
Drawing with that is e $=i_{\text {bs }}$. $\left.\begin{array}{c}\text { Not true! } \\ \text { otherwise! }\end{array}\right)$.
See next page

Move precisely,

$$
H(\psi)= \begin{cases}\frac{N_{s}}{2 g}\left(i_{a_{s}}+i_{b_{s}}\right), & 0<\psi<\pi / 2 \\ \frac{N_{s}}{2 g}\left(-i_{a_{s}}+i_{b_{s}}\right), & \pi / 2<\psi<\pi \\ \frac{N_{s}}{2 g}\left(-i_{a_{s}}-i_{b_{s}}\right), & \pi<\psi<3 \pi / 2 \\ \frac{N}{2 g}\left(i_{a_{s}}-i_{b_{s}}\right), & 3 \pi / 2<\psi<2 \pi\end{cases}
$$

Sinusoidal approx: $H(\psi)=\frac{N_{s}}{2 g} i_{b s} \sin \psi$

$$
+\frac{N_{s}}{2 g} i_{a s} \cos \psi
$$

When $i_{a s}=I_{s} \cos \omega_{s} t, i_{b_{s}}=\frac{1}{-s} \sin \omega_{s} t$,
we get, $H(\psi)=\frac{N_{s}}{2 g}\left[\cos \omega_{s} t \cos \psi+\sin \omega_{s}+\sin \psi\right]$

$$
=\frac{N_{s}}{2 g} \cdot \cos \left(\omega_{s} t-\psi\right)
$$

At time t, max 靬 (ψ) 量 occurs at $\psi=w_{s} t$
Not pulsating, but a traveling magnetic field.

Thumb-rule:
It gets +ie contribution from \otimes to (1) as you go clockwise.

Superpose:

$$
\begin{align*}
H & =\frac{N_{s} i_{a_{s}}}{2 q}-\frac{N_{s} i_{c s}}{2 q}-\frac{N_{s} i_{b s}}{2 g} \tag{b}\\
& =\frac{N_{s}}{2 q}\left[i_{a s}-i_{b s}-i_{c s}\right] . \tag{x}
\end{align*}
$$

Assume all coils have Ns turns.

3 sets of coils.

$$
\rightarrow \quad-\frac{N_{5} i_{b 5}}{2 g}
$$

Exercise: Do it for 2ϕ machines.
Renumber to ace rotor windings as well $\left.\right|_{0}$.

Recall: We were trying to calculate $\hat{\lambda}=L(\Theta)$ i
an Steps (4) and (5).

- Computing $B=\mu_{0} H$ is straightforward.
- Computing λ (flux linkage) from B.

Let's do one example. (You can ship the derivation and go)

Q. Find mutual inductance between the two set of windings, with sinusoidal approximation for the magnetic field intensity.
we can deduce that
Sot: Before doing any work Λ the answer has the form $(M \cos \theta)$?
Let's derive it rigorously, and thew learn how to get it-withont doing the work!

$$
H(\psi)=\frac{N_{s} i_{s}}{2 g} \sin (\psi)+\frac{N_{r} i_{r}}{2 g} \sin (\psi-\theta)
$$

How do we compute mutual inductance?

- Kero the current in one coil
- Find flux linkage in the same roil! as $($ mutual inductance $) \times\binom{$ current in }{ other $\cos l}$.

Great!. Let's do if ${ }_{\sigma}$ '. Set $i_{r}=0$.

To compute flux-linkage through "rotor windings, consider a "Curved" surface whose boundary is the blue line and runs parallel to the length of the cylindrical rotor.

$$
\begin{aligned}
\psi(\alpha)=\int_{\substack{\text { surfed } \\
\text { sauce. }}} \vec{B} \cdot d \vec{s} & =\int_{\psi=\theta}^{\psi} \int_{0} \cdot \frac{N_{s} \text { is }}{2 g} \cdot \sin (\psi) d \psi \\
& =\mu_{0} \frac{\mu_{0} \cdot N_{s} i_{s}}{2 g} \cdot[-\cos \psi]_{\theta}^{\theta+\pi} \\
& =\mu_{0} \frac{N_{s} i_{s}}{2 g} \cdot[\cos \theta-\underbrace{\cos (\theta+\pi)}_{=-\cos \theta}]
\end{aligned}
$$

$$
\begin{aligned}
\therefore \phi & =\mu_{0} \frac{N_{s} i_{s}}{\not \mu_{g}} \cdot \not \partial \cos \theta \cdot \\
& =\frac{\mu_{0} N_{s} i_{s}}{g} \cos \theta \\
\therefore \lambda & =\mu_{r o n} N_{r} \phi=\mu_{0} \frac{N_{s} N_{r}}{g} \cdot \cos \theta \cdot \cdots i_{s}
\end{aligned}
$$

Summary:
Mutual inductance.

$$
\begin{aligned}
\text { mutual inductance } & =M \cos \left(\theta+\frac{\pi}{2}\right) \\
& =-M \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
\text { mutual inductance } & =M \cos \left(\theta+\frac{3 \pi}{2}\right) \\
& =M \sin \theta
\end{aligned}
$$

Go from to other coil's anticlochance to find the angle. Take cos (angle)!

Example:- (Rather an exercise :)).
O

If is tedious, but nothing conceptually difficult. Apply your rules for computing mutual inductance to verify all terms in this e in this $\underline{\underline{n}}=L(\theta)_{\underline{i}}$ relation.
Verify that $\left(\begin{array}{l}\lambda_{a s} \\ \lambda_{b s} \\ \lambda_{a r} \\ \lambda_{b r}\end{array}\right)=\left(\begin{array}{cccc}L_{s} & 0 & M \cos \theta & -M \sin \theta \\ 0 & L_{s} & M \sin \theta & M \cos \theta \\ M \cos \theta & M \sin \theta & L_{r} & 0 \\ -M \sin \theta & M \cos \theta & 0 & L_{r}\end{array}\right)\left(\begin{array}{c}i_{a s} \\ i_{b s} \\ i_{a r} \\ i_{b r}\end{array}\right)$
for a $2-\phi$ synchronous machine.
dx a

Summary of topics under synchronous machines.

Some conditions on the frequencies of currents and rotor's angular freq,
for steady -state operation. (In short, "frequency condition")

We know how to do it for 2ϕ; machines.
Next step: $3 \oint$ synchronous machine.

Summary of 2ϕ. machines.

(1) Ampere's law + Sinusoidal approx + flux calculation

$$
L_{c o} \underbrace{\left(\begin{array}{l}
\lambda_{a s} \\
\lambda_{b s} \\
\lambda_{c s} \\
\lambda_{r}
\end{array}\right)}_{=\lambda}=\underbrace{\left(\begin{array}{cccc}
L_{s} & \| & 0 & M \cos \theta \\
0 & L_{s} & M \sin \theta & -M \sin \theta \\
M \cos \theta & M \cos \theta & L_{r} & 0 \\
-M \sin \theta & M \cos \theta & 0 & L_{r}
\end{array}\right) \underbrace{\left(\begin{array}{c}
i_{a s} \\
i_{b s} \\
i_{c s} \\
i_{r}
\end{array}\right)}_{i} ., ~}_{=L(\theta)}
$$

When $i_{a s}=I_{s} \cos \omega_{s} t, \quad i_{b_{s}}=I_{s} \sin \omega_{s} t$,

$$
\begin{aligned}
& i r=I_{r} \cos \omega_{r} t \\
& \theta=\omega_{m} t+\gamma
\end{aligned}
$$

$$
\omega_{m}=\omega_{s}-\omega_{r}
$$

Frequency
When frequency condition is satisfied, condition.

$$
T^{e}=\left\langle T^{e}\right\rangle=-M I_{s} I_{r} \sin \gamma .
$$

Mechanical power output $=T^{e} \omega_{m}=T^{e} \omega_{s}$.
Why? Steady-state $\Rightarrow T^{m}$ (m ere torque into system)

$$
\begin{aligned}
=- & T e . \\
\therefore \text { mech power output } & =\left(-T^{m}\right) \cdot \omega / m \\
& =T e \omega_{s} .
\end{aligned}
$$

$\left.\begin{array}{l}\text { What assmuptions } \\ \text { did we make }\end{array}\right\} \Rightarrow \begin{aligned} & T^{f}=0, \text { or no losses in } \\ & \text { mechanical subsystem. }\end{aligned}$

Equivalent $\frac{T_{1}}{T_{a}}$ circuit it:

Fix one of the angles between that of $\bar{V}_{a s}, \bar{I}_{a}$, Ear to zero.
Usually, it's $\bar{V}_{a s}=\left|\bar{V}_{a s}\right| 40^{\circ}$.
A Ia \& can be derived from power factor.
AE ar: ס (call it the torque angle).
angle of $\bar{E}_{a r}$ relative to $\overline{V a s}$.
3ϕ-machines (Round - wot)

NOTICE: We only have one rotor coil in this derivation.

$$
\left(\begin{array}{l}
\lambda_{a s} \\
\lambda_{b s} \\
\lambda_{c s} \\
\lambda_{r}
\end{array}\right)=\left(\begin{array}{cccc}
L_{0} & -L_{0} / 2 & -L_{0} / 2 & M \cos \theta \\
-L_{0} / 2 & L_{0} & -L_{0} / 2 & M \cos \left(\theta-120^{\circ}\right) \\
-L_{0} / 2 & -L_{0} / 2 & L_{0} & M \cos \left(\theta+120^{\circ}\right) \\
M \cos \theta & M \cos \left(\theta-120^{\circ}\right) & M \cos \left(\theta+120^{\circ}\right) & L_{r}
\end{array}\right)\left(\begin{array}{l}
i_{a s} \\
i_{b s} \\
i_{c s} \\
i_{r}
\end{array}\right)
$$

You do not need to remember this relation.
las But, you should be able to explain why
Self-inductance of as coil $=L_{0}$
\Rightarrow mutual inductance of as, b_{s} coil $=-L_{0} / 2$.

- mutual inductance of $a_{s}, a_{r} \operatorname{coi} / s=M \cos \theta$
\Rightarrow mutual inductance of bs, ar coils $=M \cos \left(\theta-120^{\circ}\right)$.
(2) Equivalent circuit.

You do not need to know the derivation, but know the end result!
and undete what assumptions are these derived

Ascmuptions throughout

$$
\begin{aligned}
& \text { - } i_{\Delta s}=I_{s} \cos \omega_{s} t \\
& \text { - } \quad i_{s s}=I_{s} \cos \left(\omega_{s} t-120^{\circ}\right) \\
& \text { - } i_{c s}=I_{s} \cos \left(\omega_{s} t+120^{\circ}\right) \\
& \text { - 埕 } i_{\gamma}=I_{r}\left[\begin{array}{c}
\text { cost. and dons not } \\
\text { vary with time }
\end{array}\right] \text {. } \\
& W_{M I}{ }^{\prime}=\frac{1}{2} \underline{i}^{\top} L(0) \underline{i} \\
& =\frac{1}{2} L_{0} i_{i s}^{2}+\frac{1}{2} L_{0} i_{b_{s}}^{2}+\frac{1}{2} L_{0} i_{s}^{2}+\frac{1}{2} L_{r} i_{v}^{2} \\
& \frac{-L_{0}}{2}\left(i_{a s} i_{b s}+i_{b s} i_{c s}+i_{c s} i_{a s}\right) \\
& +M \text { lair } \cos \theta+M i_{z} i r \cos \left(\theta-120^{\circ}\right) \\
& +M_{i .} \text { ir } \cos \left(\theta+120^{\circ}\right)
\end{aligned}
$$

$1^{\circ} \mathrm{We}$ are interested in steady- state of".

$$
\begin{aligned}
\ddot{\theta}=0 & \Rightarrow \dot{\theta}=\text { cons } \\
& \Rightarrow \theta=\omega_{m} t+\gamma
\end{aligned}
$$

Deriving frequency condition

Skip to the result directly. Derivation is given to help you understand the details.

$$
\left.\begin{array}{rl}
\frac{\partial \omega_{m}{ }^{\prime}}{\partial \theta}=-M i_{r}\left[\begin{array}{l}
I_{r} \\
i_{a} \sin \theta^{2} \\
I_{s} \cos \omega_{s} t
\end{array} i_{b} \quad i_{s} \sin \left(\theta-120^{\circ}\right)+i_{c} \sin \left(\theta^{2}+120^{\circ}\right)\right.
\end{array}\right] .
$$

Recall: $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)]$.

$$
\begin{aligned}
\therefore T^{e}=\frac{\partial \omega_{m}^{\prime}}{\partial \theta}=\frac{-M I_{s} I_{v}}{2}[& \left.+\begin{array}{l}
\sin \left(\omega_{m} t+r+\omega_{s} t\right)+\sin \left(\omega_{m} t-\omega_{s} t+r\right) \\
\sin \left(\omega_{m} t+r+\omega_{s} t-240^{\circ}\right)+\sin \left(2^{2}\right) \\
\sin \left(\omega_{m} t+\gamma+\omega_{s} t+240^{\circ}\right)+\sin (\nu)
\end{array}\right]
\end{aligned}
$$

this part looks like

$$
\sin x+\sin \left(x-240^{\circ}\right)+\sin \left(x+240^{\circ}\right) .
$$

That equals o! Easiest way to see it is through complex nos.
$\sin x=\operatorname{Im}\left\{e^{j x}\right\}$.
\therefore above $\exp ^{n}=\operatorname{Im}\{\underbrace{\text { d. as cist on re mo. }}_{\substack{\text { draw these vectors! }} e^{j\left(x-240^{\circ}\right)}+e^{j\left(x+240^{\circ}\right.}}$

$$
T^{e}=-\frac{M I_{s} I_{r}}{2}\left[3 \sin \left(\omega_{m t}-w_{s} t+\gamma\right)\right]
$$

$\left\langle T^{e}\right\rangle=$? Same trickle as in 2ϕ.

$$
\langle+e\rangle=\left\{\begin{array}{l}
0 \text { if } \omega_{m} \neq \omega_{s} \\
\frac{-3 M I_{s} I_{r}}{2} \sin \gamma ., \text { if } \omega_{m}=\omega_{s} .
\end{array}\right.
$$

Result (Very important!!
Frequency condition: $\omega_{m}=\omega_{s}$.

$$
T e=\left\langle T^{e}\right\rangle=-\frac{3 M I_{s} I_{r}}{2} \sin \gamma
$$

Equivalent cher (Steady-state, satisfying frequency condition)

$$
\begin{aligned}
& v_{a s}=i_{a s} R_{s}+\frac{d \lambda_{a s}}{d t} \\
& \text { Skip to result directly. } \\
& \text { Deviation is only for completeness. } \\
& =i_{a_{s}} R_{s}+\frac{d}{d t}\left[L _ { 0 } i _ { a s } I _ { s } \operatorname { c o s } \omega _ { s } t L _ { s } L _ { 0 } i _ { b s } \operatorname { c o s } (\omega _ { s } t - 1 2 0 ^ { \circ }) \left(I_{s} \cos \left(\omega_{s}++120^{\circ}\right)\right.\right. \\
& \begin{array}{l}
\omega_{m n}+\gamma \\
\overline{\bar{t}}+\omega_{s} .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
v_{a s}=I_{s} \cos \omega_{s} t & R_{s} \\
+L_{0} I_{s} & {\left[-\omega_{s} \sin \omega_{s} t+\frac{\omega_{s}}{2} \sin \left(\omega_{s} t-120^{\circ}\right)\right.} \\
& \left.+\frac{\omega_{s}}{2} \sin \left(\omega_{s} t+120^{\circ}\right)\right] \\
- & M I_{r} \omega_{s} \sin \left(\omega_{s} t+\gamma\right)
\end{aligned}
$$

$$
=I_{s} R_{s} \cos \omega_{s} t-3 \frac{\omega_{s} L_{0} I_{s}}{2} \sin \omega_{s} t-M I_{r} \omega_{s} \sin \left(\omega_{s} t+1\right.
$$

$$
+\frac{\omega_{s}}{2}[\underbrace{\sin \omega_{s} t+\sin \left(\omega_{s} t-120^{\circ}\right)+\sin \left(\omega_{s} t+120^{\circ}\right)}_{=0 \text {. Again, to see this, }}]
$$

$=0$. Again, to see this,
use the fact $\sin x=\operatorname{Im}_{m}\left\{e^{j x}\right\}$.

$$
\begin{array}{l}
=I_{s} R_{s} \cos \omega_{s} t-\frac{3}{2} \omega_{s} L_{0} T_{s} \sin \omega_{s} t-M I_{r} \omega_{s} \sin \left(\omega_{s} t+r\right) \\
=\operatorname{Re}\{\sqrt{2}(R_{s} \cdot \underbrace{\left[I_{s} \alpha_{2}\right.}_{=I_{s}} \alpha_{0}]
\end{array}+\underbrace{\left[j \omega_{s} \frac{3 L_{0}}{2}\right]}_{=X_{s}} \underbrace{\left[\frac{I_{s}}{\sqrt{2}} \alpha_{0}\right]}_{=I_{a s}}+\underbrace{\left[\frac{M I_{r} \omega_{s}}{\sqrt{2}}\left\langle\gamma+\frac{\pi}{2}\right]\right.}_{=E_{a r}}) e^{j \omega_{s} t}\} .
$$

$$
\therefore v_{a s}=\operatorname{Re}\left\{\sqrt{2}\left(R_{s} \bar{I}_{a s}+j x_{s} \bar{I}_{a s}+\bar{E}_{a v}\right) e^{j \omega_{s}+t}\right\}
$$

Then, the phasor $\bar{V}_{\text {as }}$ associated with $V_{\text {as }}$ satisfies $\xi:$

$$
\bar{V}_{a s}=\left(R_{s}+j X_{s}\right) \cdot \bar{I}_{a s}+\bar{E}_{a r}
$$

Circuit \quad representation

- In this representation, which phasor among $\bar{v}_{\text {as }}, \bar{I}_{a s}, \bar{F}_{a y}$ has zero angle? Ansi $\bar{I}_{a s}$.
- Reatscalle Change reference such that $\chi \bar{V}_{a s}=0$.

More precisely, if $X \bar{V}_{a s}=\alpha,\left\langle\bar{I}_{a s}=0, \quad\left\langle E_{a r}=\gamma+\frac{\pi}{2}\right.\right.$.
 Why? $C \begin{aligned} & \text { Sometimes called } \\ & \text { torque angle }:=\delta\end{aligned}$

terminal voltage
Next topic:
Using the equivalent circuit.
$S_{3 \phi}^{\text {in }}=$ Complex power "into" the machine across all three phases

$$
\begin{aligned}
& =3 \underbrace{S_{\phi}^{i n}}_{\text {per phase. }} \\
& =3 \cdot\left[\bar{V}_{\text {as }}^{I_{a s}^{*}}\right]
\end{aligned}
$$

Common assumption: $R_{s}=0$, i.e, stator resistance is negligible.

$$
\therefore g_{3 \phi}^{i w}=3 \cdot\left[\bar{V}_{a s}\left(\frac{\bar{V}_{a s}-\bar{E}_{a r}}{j x_{s}}\right)^{*}\right]
$$

In short, whether the machine is a generator or a motor is completely encoded in δ.

What is δ again? A difference between $\bar{E}_{a r}$ and $\overline{V a s}$.

Phasor-diagram

\Rightarrow Motor.

Let's complete the above phasor diagrams! Draw $\tilde{I}_{\text {as }}$

Recall: $\operatorname{Han}_{\text {an }} \bar{V}_{a s}=\bar{E}_{a y}+j x_{s} \bar{I}_{a_{s}}$ " ${ }^{\prime}$ " rotates complex na. by $\frac{\pi}{2}$, in the comuterclochuise direction.

Exercise: Motor or a generator?

Ans. All that matters is the angle between $\bar{V}_{a s}$ and Ear. It's a motor. Verify!.

- Salient point:

$$
\begin{aligned}
& Q_{3 \phi}^{i n}=\operatorname{Im}\left\{\sin _{3 \phi}^{i n}\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Downarrow \\
& Q_{3 \phi}^{\text {in }}>0 \\
& Q_{3 \phi}^{i n}<0 \\
& \text { called "UNDER-EXCITED" } \\
& \text { Called "OVER-EXCITED" }
\end{aligned}
$$

EXCITE? Who excites whom? Recall $\left|E_{\text {ar }}\right| \propto I_{r}$.
\therefore Rotor current excites |Ear|.

$$
\begin{aligned}
& \therefore S_{3 \phi}^{\text {in }}=3 \cdot\left[\frac{\left|\bar{V}_{a s}\right|^{2}}{-j x_{s}}-\frac{\bar{V}_{\text {as }} \bar{E}_{\text {are }}^{*}}{-j x_{s}}\right]\left|\bar{E}_{\text {url }}\right| \nless \delta 0^{\circ} \\
& =3 \cdot\left[\frac{\left|\bar{V}_{\text {as }}\right|^{2}}{x_{s}}-j \frac{\left|\bar{V}_{\text {as }}\right| \cdot\left|\bar{E}_{a r}\right| \widetilde{X^{-}}-\delta}{x_{s}}\right](\cos \delta-j \sin \delta) \\
& =3 \cdot\left[j\left(\left.\frac{\left|\overline{v a s}_{s}\right|^{2}}{x_{s}}-\frac{\left|\bar{v}_{a_{s}}\right|\left|E_{a_{a y}}\right|}{x_{s}} \right\rvert\,=\frac{\left|\overline{v a s}_{s}\right|\left|E_{a_{i}}\right|}{x_{s}} \sin \delta\right]\right. \\
& \therefore P_{3 \phi}^{i n}=-\frac{3\left|\bar{V}_{a_{s}}\right|\left|E_{a_{r}}\right|}{X_{s}} \cdot \sin \delta \text { gap. } \\
& \delta \in[0, \pi] \Rightarrow p_{3 \phi}^{i n}<0 . \\
& \text { madhineancoravents electric } \\
& \text { machine is "pushing out" } \\
& \text { electrical power. } \\
& \Leftrightarrow \text { GENERATOR. } \\
& \delta \in[-\pi, 0] \Rightarrow p_{3 \phi}^{\text {in }}>0 \\
& \text { machine is absorbing } \\
& \begin{array}{c}
\text { electrical power converts to } \\
\text { mech. power }
\end{array} \\
& \text { MOTOR. mech-power }
\end{aligned}
$$

Next Class:-

- Do an example of using circuit equivalents of synchronous machines
\rightarrow implicitly show you how to model losses in synch machines.
- Start induction machines.

Things to study in synch machines.
$2 \phi, 3 \phi \rightarrow T^{e}=\left\langle T^{e}\right\rangle$ for sinusoidal currents under freq. end ": $\omega_{m}=\omega_{s}-\omega_{r}$.

- Equivalent culet:

$$
\begin{aligned}
& \text { - } P_{3 \phi}^{\text {in }}=-\frac{3\left|\bar{V}_{a s}\right|\left|\bar{E}_{a r}\right|}{X_{s}} \sin \frac{\delta}{=} \quad\left\{\begin{array}{l}
\delta<0 \Rightarrow \text { generator } \\
\text { torque angle }
\end{array}\right. \\
& -Q_{3 \phi}^{i n}=\frac{3\left|\bar{v}_{a_{s}}\right|}{x_{s}}(\underbrace{\left.\left|\overline{v a}_{a_{s}}\right|-\left|\bar{E}_{a_{r}}\right| \cos \delta\right)}_{>0 \text { : under excited }} .
\end{aligned}
$$

