Synchronous machines. Consists of a stator (a state part) and a notor (a rotating part). Both Stator and notor has windings or coils carrying currents. Thumb | # coils windings on # phases of some = the machine. Agenda:

Derive $\lambda = L(0)$ i coils ma matrix Vectors with as many elements
as the # coils.

A = 16)i > Circuit is electrically linear. ② Jarive co-energy $W_{m}(\frac{1}{2},\theta) = \frac{1}{2}i^{T}L(\theta)i$ 3 Derive torque of electrical origin $Te\left(\frac{\dot{\imath}}{\theta}\right) = \frac{\partial W_m}{\partial \theta}$

mechanical 4) Derive Jo = Te Tw Tf torque due to torque of torque from a frichion. elekmical governor with We shall mostly some mechanical concentrate on System & that drives frictionless Systems, where Tf-D. of rotates the rotor. Think of a turbine in a hyproelectric generator. Derive electrical equation If the currents i we into the system. Voil = 2 coil Roil + d'Acoil
Noltage across / resistance in
any of the coils | that coil Jhux linkage corresponding coil current in the

Messy derivation $Siw\left(w_{m}t+V\right) cos\left(w_{s}t\right) cos\left(w_{r}t\right)$ $= \frac{1}{2} Siw\left(w_{m}t+V\right) \left[cos\left(w_{s}+w_{r}\right)t\right] + cos\left(w_{s}-w_{r}\right)t$ = 1 Sin (wmt + r) cos (ws + wr)+ + = [Sin (wm++8) co3 (ws-wr)+ = I Siw (wm+++ ws++wr+)

A Siw (wm+++-ws++wr+) + 1 [8m (wm++8+ws+-w++) $+ Sin \left(wm + v - w_s + w_r + \right)$ $= \frac{1}{2} \left[Sin \left(wm + w_s + w_r \right) + v \right]$ $= \frac{1}{2} \left[Sin \left(wm + w_s + w_r \right) + v \right]$ T | Siw ((wm - Ws - Wr) + + Y) | = wi $\frac{1}{4} \left[\frac{1}{8} \left[\frac{1}{8} \left[\frac{1}{4} \left(\frac{1}{4} w_{x} - w_{y} + w_{x} - w_{y} \right) + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{8} \left[\frac{1}{8} \left[\frac{1}{4} w_{x} - w_{y} + w_{x} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{8} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{x} - w_{y} + w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y} + w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y} + w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y} + w_{y} + w_{y} + w_{y} \right] + 4 \right] \\
+ \frac{1}{4} \left[\frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y} + w_{y} + w_{y} + w_{y} \right] \\
+ \frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y} + w_{y} + w_{y} + w_{y} \right] \\
+ \frac{1}{4} \left[\frac{1}{4} w_{y} - w_{y}$

 $9f \quad w_1 \neq 0, \quad w_2 \neq 0, \quad w_3 \neq 0, \quad w_4 \neq 0,$ $\langle T^{m} \rangle = 0$. If average torque = 0 in steady-state, then, so is average mechanical power input. Can you make a machine act as a guierator or motor if average mech. power = 0? => w: +0 for i=1,2,3,4 is an uninteresting case. o If wo one of the wis are zero, then other wis are not zero for j \(\tilde{i} \) For example, appoint apagés, $W_1 = 0 \Rightarrow W_2 \neq 0, W_3 \neq 0, W_4 \neq 0.$ =) I'm has to be time-varying to operate machine an steady State! Difficult to produce

Some of 2-4 machines. additions In the next class, we shall learn how The $\Delta = L(\Phi)i$ relations are obtained/ In this class, we shall take them understanding steady-state operation with sinusoidal currents. Mcoso -Maint Mcost (ias, ibs, lar, ibr, 0) = $\frac{1}{2} L_{s} i_{as}^{2} + \frac{1}{2} L_{s} i_{bs}^{2} + \frac{1}{2} L_{r} i_{ar}^{2} + \frac{1}{2} L_{r}^{2} i_{br}$ + $M cos \theta \left(i_{as} i_{ar} + i_{bs} i_{br}\right) + M sin \theta \left(i_{bs} i_{ar} - i_{as} i_{br}\right)$

T'= - Te

= MIsIv (+Sin (Wm++V)). Story ws+ Los wr+ + Sin ws+ Sin wrt 4 - cos(wm++8) Sin w+ cog w++ - cos w++ com in from is from in from in from in Use the formulae:

Co3 & Lo3 & + Sind Sin B = 43 (d-B)

Sin & Lo3 & - Lo3 & Sin B = 8in (d-B). ooTm=MIsIr Sin (wm++r) cos (wst-wrt) - cos(wm++x) sin (ws+-wr+) = MIsIv sin (wm++ r- ws++ wr+) = MIsIx sin (wm-ws+wr)++7 What is the soon qualitative difference between Te in 1-4 and 2-4?

 $\langle T^{m} \rangle = \begin{cases} M \sum_{s} \sum_{r} s \ln r, & \text{if } \omega_{m} - \omega_{s} + \omega_{r} = 0, \end{cases}$ o , o therwise. What about instantaneous forque. TM = SMIsIr sin 8, if Wm-Ws+Wr=0, MIs I'm Sim (Qm-Ws+W)++ r), otherwise. Frequency condition: Wm-WstWr=0 The (instantaneous torque required to maintain steady state operation) = MIs Tryin & (a constant) Also, $\langle T^m \rangle = M I_S I_r sin Y$, which is a non-zero torque. =) Average mech. power Imput = Two war for the governor = MRIVSINY WW

Last class, we studied the expressions fore te in 10,20 machines. Summary of > (When $\langle T^e \rangle \neq 0$, T^e is fine-varying calculations.) When $\langle T^e \rangle = 0$, the machine is not for $1 \neq 0$ machines. Of much use to us! for steady-state specations Summany of $T^2 = \langle T^2 \rangle = -MI_SI_Y SINY,$ Calculations for $T^2 = \langle T^2 \rangle = -MI_SI_Y SINY,$ Calculations for $T^2 = \langle T^2 \rangle = -MI_SI_Y SINY,$ $T^2 = I_S COS W_S + , T^2 = I_S SIN W_S + ,$ $T^2 = I_Y COS W_Y + , T^2 = I_Y SIN W_Y + ,$ 0 = wmt + x, Wm= Ws - Wy. This class: Derive equivalent circuit for 26-machines. Det a feel for how the λ-i relationshi, are derived for 1φ, 2φ, 3φ machines. 2ϕ machines:
O'We begin with $\lambda = L(\theta)i$ Write to electrical equation 3 Manipulate if to get a circuit out of it-

Vas = RMA Rs ras + d [Ls ras + Mcozo rar - Msino rbr

Is cos(wst) Is cos(wst) Iv. = Rs Is cos (wst) + d [LsIs cos wst] + HARRIN of [MI, BOB (ws+ + 8)] = Rs Ts cos wst - wsLs Ts sin west - ws MIr sin (wet+8), = $Re \left\{ \sqrt{2} \cdot R_s \cdot \overline{I_s} \not = 0 \cdot e^{j\omega_s t} \right\}$ + $Re \left\{ \sqrt{2} \cdot \left(j\omega_s L_s \right) \cdot \overline{I_s} \not = 0 \cdot e^{j\omega_s t} \right\}$ + Re $\left\{ \sqrt{2}, \frac{\sqrt{11}+\gamma}{\sqrt{2}} \right\} \cdot e^{\int \omega_s + \frac{1}{2}}$ Nerify these 3 terms! = Re 1 Vz. (Rs Ias + j xs Ias + Ear). e jwst Waif! The above looks like the time-domain signal for the

= phasor Rs Ias + J Xs Ias + Eav.

Next topic :-
How are $\lambda = L(\bullet)i$ relations derived in
rotatines?
1) Aupere's law yields H, the
1) Aupere's law 2) Superposition 3) Simusoridal approximation magnetic field intensity in the air-gap.
(A) B= hoH in air-gab
(4) B= po H in air-gap (5) Compute flux linkage using \$B.da.
Achieving D, D, B for one set of Standing assumptions &
O g << radius of
1/23, Ne turns. (2) His radial in the air-gap.
Loop 1: Ampere's law around loop 1 yields $H(Y) = const.$ for $Y \in (0, Ti)$.
and $H(Y) = cone + . for$ $Y \in (\pi, 2\pi).$
D. Un de troite vancell t

Move precisely, $H(\gamma) = \begin{cases} \frac{N_s}{2g} \left(\frac{i_{as} + i_{bs}}{2g} \right), \\ N_s \left(-\frac{i_{as} + i_{bs}}{2g} \right) \end{cases}$ O< Y< 1/2 四/2<4<万 Ns (- ias + 725), $\pi < \gamma < 3\pi/2$ Ns (-las - 76s), $3\pi/2< 4< 2\pi$ $\frac{N_s}{2g}\left(\hat{\imath}_{as}-\hat{\imath}_{bs}\right)$ Simusoridal approx": $H(Y) = \frac{Ns}{2g} i_{bs} sin Y$ $+ \frac{Ns}{2g} i_{as} cos Y$ When ins = Is cos wst, ibs = Isin wst, we get, $H(\gamma)$ = NS cos wst cos γ + Sin wst sin γ = Ns. cos (wst - +). At time t, max 3H(4) Boccurs at deplace $\gamma = w_s t$ Not pulsaling, but a travelling magnetic field.

or rotations.

Recall: We were trying to calculate 2 = L(0) i
Man Steps (4) and (5).
· Computing B = no H is straightforward.
Computing A (flux linkage). from B. Let's do one example. (You can ship the derivation and go) to summary in the first reading!
Let's do one example. (You can ship the derivation and go) to summary in the first reading!
ir Nr turus Rotor winding
is, Ns turns
Stator windings
B. Find mutual inductance as between the two set of
magnetic field intensity.
We can deduce that
B. Find mutual inductance was between the two set of windings, with simusoidal approximation for the magnetic feld intensity. we can deduce that sol': Before doing any work, the answer work has the form (M cos 0).
h
Let's derive it rigorously, and then learn how to get it without doing the work!

Summary of topies under synchronous machines. law — H approxime $\lambda = L(\Theta) \hat{i}$ (readial magnetic field intensity) Wm = 1 1 TL(0) i $v = iR + \frac{d\lambda}{dt}$ Equivalent Te = DWW . Conditions for (Te) \$0. Some conditions on the frequencies of currents and rotor's angular freq, for Steady state operation (In short, "frequency condition") We know how to do it for 20; machines. Next step: 30 synchronons machiner.

When $i_{as} = I_s cos w_s t$, $i_{bs} = I_s sin w_s t$, $i_{ar} = I_r cos w_r t$, $i_{br} = I_r sin w_r t$ $v_{ar} = v_r cos w_r t$, $v_{br} = v_r cos w_r t$

When frequency condition is satisfied,

Te = $\langle Te \rangle = -M I_s I_r sin Y$.

Wm = Ws - Wr Frequency

frequency condition.

Mechanical power output = Tewn = Tews. Why? Steady-state => Tm (melle torque into system) .: mech power output = (Tm). W/m = Tews, What assumptions = Tf=0, or no losses me did we make = mechanical subsystem. Fix one of the angles between that of Vas, Ia, Ear to zero. Équivalent circuit : Usually, it's Vas= Vas 40. X Ia & can be derived from

power factor. __ called __ called terminal voltage. SEar : S (call it the torque angle). I augle of Ear e relative to Vas.

1900 AM

30-machines (Round-notor) 1 las

1 las NOTICE: We only have one rotor coil in this derivation. M CB (0-120) /265 M CB (0-120) /265 M COS (0+120) /265 Ly $\begin{vmatrix} \lambda_{RS} \\ \lambda_{SS} \\ \lambda_{SS} \end{vmatrix} = \frac{-l_0/2}{-l_0/2} - \frac{l_0/2}{-l_0/2} - \frac{l_0/2}{-l_0/2}$ -lo/2 You do not need to remember this relation. last But, you should be able to explain why

Self-inductance of as coil = Lo=) mutual inductance of as, by coil = -Lo/2.

mutual inductance of as, as coils = MCOS OF=) mutual inductance of by, as coils = MCOS OF=) mutual inductance of by, as coils = MCOS OF

We shall derive & Equivalent circuit. You do not need to know the derivation, but know the end result! and undete what assumptions are these derived Ascumptions throughout · We are interested in Steady- State of ". Is cos Ws+ o lag = Ig Cos (Wst - 1200) o îbs = $\theta = 0 \Rightarrow \theta = const$ = $\theta = \omega_{m} + 4 \%$ Is cos (Ws++120°) · In in = Ir [const. and does not]. Deriving frequency $W_{\mathbf{M}} = \frac{1}{2} \, \underline{i}^{\mathsf{T}} \, \underline{L}(\mathbf{0}) \, \underline{i}$ 4 - Lo (ias ibs + ibsics + ies ias) understand the details. + Minin COS(+120°)

$$V_{as} = \overline{I}_{s} \log \omega_{s} + R_{s}$$

$$+ \log \overline{I}_{s} \left[-\omega_{s} \sin \omega_{s} + \omega_{s} \sin \left(\omega_{s} + -120^{\circ} \right) \right]$$

$$+ \frac{\omega_{s} \sin \left(\omega_{s} + +120^{\circ} \right)}{2}$$

$$+ M I_{r} \omega_{s} \sin \left(\omega_{s} + +8 \right).$$

$$= \overline{I}_{s} R_{s} \omega_{s} \omega_{s} + -3 \frac{\omega_{s} \log \overline{I}_{s}}{2} \sin \omega_{s} + -M I_{r} \omega_{s} \omega_{s} \omega_{s} \omega_{s} + \frac{\omega_{s} \log \omega_{s} + 120^{\circ}}{2}$$

$$+ \frac{\omega_{s}}{2} \left[\sin \omega_{s} + + \sin \left(\omega_{s} + -120^{\circ} \right) + \sin \left(\omega_{s} + +120^{\circ} \right) \right]$$

$$= 0. \text{ Again, to see this,}$$

$$= \overline{I}_{s} R_{s} \cos \omega_{s} + -\frac{3}{2} \omega_{s} \log \overline{I}_{s} \sin \omega_{s} + -M I_{r} \omega_{s} \sin \left(\omega_{s} + +120^{\circ} \right)$$

$$= 1.5 R_{s} \cos \omega_{s} + -\frac{3}{2} \omega_{s} \log \overline{I}_{s} \sin \omega_{s} + -M I_{r} \omega_{s} \sin \left(\omega_{s} + +120^{\circ} \right)$$

$$= \operatorname{Re} \left\{ \sqrt{2} \left(\operatorname{Rs} \cdot \left[\frac{T_{s}}{V_{2}} \cancel{4} 0 \right] + \left[\frac{1}{3} w_{s} \cdot \frac{3L_{0}}{2} \right] \left[\frac{T_{s}}{V_{2}} \cancel{4} 0 \right] + \left[\frac{M I_{\gamma} w_{s}}{V_{2}} \cancel{4}^{\gamma + \frac{\pi}{2}} \right] \right\} e^{\int w_{s} d} \right\}$$

$$= \overline{I}_{as}$$

$$= \overline{I}_{as}$$

$$= \overline{I}_{as}$$

$$= \overline{I}_{as}$$

Represente Change reference such that $X \overline{Vas} = 0$.

More precisely, if $X \overline{Vas} = X$, $X \overline{Ias} = 0$, $X \overline{Eav} = X + \frac{\pi}{2}$.

Yenovmalized of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Eav} = X + \frac{\pi}{2} - \infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Ias} = -\infty$ Values of $X \overline{Vas} = 0$, $X \overline{Vas}$

Very important.) Final circuit equivalent 1 Ind /- 2 Rs jXs + Ear = MIr Ws X T+R-d Vas = Vas 1 x0° = MIrws X8. internal voltage. terminal voltage Next topics Using the equivalent circuit. Sin = Complex power "into" the machine across all three phases = 3 Sper phase. = 3. \ Vas Ias]. Common assumption: Rs = 0, i.e. is negligible. $v_{o} = 3. \left[\overline{V_{as}} - \overline{E_{av}} \right]^{*}$

In short, whether the machine is a generator or a motor, is completely encoded in S.
What is Sagain? & difference between Ear and Vas.
Phasor-diagram
Jenerator Vas
Vas =) Motor.
Let's complete the above phasor diagrams! Draw Ias and j Ks Ias
Recall: Ban Vas = Ear + j Xs Jas Vas J rotates complex no. by 7, in the counter-clockwise direction

Exercise : Motor or a generator? Ans. All that matters is the angle between Vas and Ear.

It's a motor. Verify!. · Salient point: direction 2] - Ias 930 = Im \ Pin \ 34 \. = 3 |Vas| (|Vas| - |Earl cos 8). I IVas / < /Ear / cosd 1 | Vas > | Ear | 603 8 $Q_{3\phi}^{in} < 0$ $Q_{3\phi}^{in} > 0$ Called "OVER - EXCITED" called "UNDER-EXCITED"

EXCITE? Who excites whom? Recall | Earl & Ir.

: Rotor current excites | Earl.

$$|V_{as}|^{2} = 3 \cdot \frac{|V_{as}|^{2}}{|V_{as}|^{2}} - \frac{|V_{as}|^{2}}{|V_{as}|^{2}} - \frac{|V_{as}|^{2}}{|V_{as}|^{2}} - \frac{|V_{as}|^{2}}{|V_{as}|^{2}} - \frac{|V_{as}||E_{av}|}{|V_{as}||E_{av}|} = 3 \cdot \frac{|V_{as}|^{2}}{|V_{as}|^{2}} - \frac{|V_{as}||E_{av}||E_{av}|}{|V_{as}|^{2}} + \frac{|V_{as}||E_{av}||E_{av}|}{|V_{as}||E_{av}||E_{av}|} = 3 \cdot \frac{|V_{as}||E_{av}||E_{av}||E_{av}|}{|V_{as}||E_{av}||E_{av}||E_{av}|} + \frac{|V_{as}||E_{av}||E_{av}||E_{av}|}{|V_{as}||E_{av}||E_{av}||E_{av}|} = 3 \cdot \frac{|V_{as}||E_{av}$$

Next classo-

o Do an example of using circuit equivalents of synchronous machines model losses in synch machines.

· Start induction machines.

Things to study in synch machines.

20,30 - Te = (Te) for sinusoidal currents

under freq. cond": Wm = Ws-Wr.

Tas=Fas | 4-d

or Mas | 40"

Vas | 40"

Vas | 40"

Vas | 40"

The sinusoidal currents

Wm = Ws-Wr.

Vm = Ws-Wr.

Vm = Ws-Wr.

Vm = Ws-Wr.

· Pin = -3/Vas/|Earl Sin S torque angle (820=) motor.

· 930 = 3/Vas / (| Vas | - | Engloss).