
ECE 330 HW #11

In class quiz – Thursday Apr 12. Copies of the textbook are kept at the Grainger Engineering Library Reserve

Problem 1:

The rotational electromechanical system shown below has two sets of stator windings (as, bs) and one set of rotor windings (r).

When the rotor's angular position is given by θ as indicated, the flux linkages of the windings are given by:

$$\begin{split} \lambda_{as} &= L_s i_{as} + M \cos(\theta) \, i_r, \\ \lambda_{bs} &= L_s i_{bs} + M \sin(\theta) \, i_r, \\ \lambda_r &= M \cos(\theta) \, i_{as} + M \sin(\theta) \, i_{bs} + L_r i_r, \end{split}$$

where *i* denotes the current into the respective windings, and L_{as} , L_{bs} , L_r , *M* are positive constants.

- a) Compute $W'_m(i_{as}, i_{bs}, i_r, \theta)$ and $T^e(i_{as}, i_{bs}, i_r, \theta)$. (**Partial Answer**: $T^e(i_{as}, i_{bs}, i_r, \theta) = -M\sin(\theta) i_{as}i_r + M\cos(\theta) i_{bs}i_r$.)
- b) Suppose the stator currents are sinusoidal functions of time, given by $i_{as} = I_s \cos(\omega_s t)$ and $i_{bs} = I_s \sin(\omega_s t)$. The rotor current is given by $i_r = I_r$, and the angular position varies as $\theta = \omega_m t + \gamma$. In these relations, I_s , I_r , γ are constants. Find the so-called *frequency condition* on ω_s and ω_m so that the average value of $T^e(i_{as}, i_{bs}, i_r, \theta)$ is non-zero. (Answer: $\omega_s = \omega_m$)
- c) Assume that the rotor experiences two different torques one from a mechanical governor and another of electrical origin (T^e) . What is the average mechanical power input from this governor, if the machine is operated in steady-state and it satisfies the frequency condition you derived in part (b)? (Answer: $MI_sI_r \omega_m \sin(\gamma)$)