2.4)

$\bar{z}=25 \Omega$
$\bar{z}_{2}=-j 15 \Omega$
$v(t)=\sqrt{2}(120) \cos \left(\omega t-45^{\circ}\right)$
a) $\bar{V}=120<-45^{\circ}$

$$
\bar{S}=\overline{\mathrm{V}} \bar{I}^{*} \Rightarrow \bar{S}=1119.6 /-59.04^{\circ} \mathrm{VA}
$$

$$
\begin{aligned}
& \text { b) } \\
& z_{2}=j 20 \Omega \\
& \bar{z}_{t t 1}=9.756+j 12.95 \Omega \Rightarrow \bar{z}_{\text {tot }}=15.617 / \leq 1.340^{\circ} \\
& \bar{I}=\frac{120-45^{\circ}}{15.617 / 5.3940^{\circ}} \Rightarrow \begin{array}{l}
\bar{I}=7.684\left(-96.34^{\circ} A\right. \\
i(t)=\sqrt{2}(7.684) \cos (\omega t-96334)
\end{array} \\
& s=\bar{V} \bar{I}^{*}=922.08 \angle 51.340^{\circ} \mathrm{VA}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{Z_{01}=\left(\frac{1}{25}+-\frac{1}{15}\right)^{-1}} \Rightarrow\left(\frac{1}{25}+\frac{j}{15}\right)^{-1}=\left(\frac{1}{5}\left[\frac{1}{5}+\frac{j}{3}\right]\right)^{-1}=\left(\frac{1}{5}\left[\frac{3+55}{15}\right)^{-1}\right. \\
& =\left(\frac{1}{15}[3+j 5)^{-1} \Rightarrow 75\left(\frac{1}{3+j 5}\right) \Rightarrow 75\left(\frac{3-5}{4+25}\right)\right. \\
& \left.\bar{z}_{\mathrm{z}_{\mathrm{ta}}}=6.618-j\right) 1.029 \Omega \Rightarrow 12.862(-59.034 \\
& \overline{\bar{I}}=\frac{120-45^{\circ}}{12.862\left[-59.0340^{\circ}\right.} \rightarrow \quad \bar{I}=9.330 \angle 14.034^{\circ} \mathrm{A} \quad i(t)=\sqrt{2}(9.330) \cos \left(\omega t+14.0344^{\circ}\right) \mathrm{A}
\end{aligned}
$$

Quiz 1 Review
2.7)

$$
\begin{aligned}
& P_{L}=0.7 \mathrm{lag} \\
& P_{L}=10 \mathrm{~kW} \\
& P_{L}=V I(P F) \Rightarrow I=\frac{P_{L}}{V(P F)} \Rightarrow I=\frac{10 \mathrm{~kW}}{23^{0}(0.7)} \Rightarrow I=62.112 \mathrm{~A} \\
& \bar{I}=62112 \angle-45.573^{\circ} \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V}_{s}=(0.1+j 0.4) \bar{I}+230 / 0^{\circ} \\
& \bar{V}_{s}=25.609 / 30.391^{\circ}+230 / 0^{\circ} \\
& \bar{V}_{s}=252.09+j 12.956 \\
& \bar{V}_{s}=252.42^{3} / 2.942^{\circ}
\end{aligned}
$$

$$
\bar{S}=\overline{V I} \Rightarrow \begin{aligned}
& \bar{S}=15,678.5 \angle 48.515^{\circ} \\
& P F=0.662199
\end{aligned}
$$

Quiz 1 Review
2.12)

$$
\begin{aligned}
& S_{1}=100 \mathrm{kVA}, P P_{1}=0.866 \mathrm{lag} \\
& P_{2}=40 \mathrm{~kW}, P F=0.51 \mathrm{lag}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{S}_{1}=100 / 30^{\circ} \mathrm{kVA} \\
& \bar{S}_{2}=80 / 60^{\circ} \mathrm{kVA}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{S}_{t+t}=\bar{S}_{1}+\bar{S}_{2} \rightarrow \bar{S}_{t t t}=86.603+j 50+40+j 69.282 \mathrm{kVA} \\
& \overline{S_{101}}=126.603+119.282 \mathrm{kVA} \\
& \bar{S}_{\text {Sot }}=173.944143 .295^{\circ} \mathrm{kVA} \\
& \bar{S}_{\text {wot }}=\bar{V}^{*} \Rightarrow \overline{\bar{I}}=\left(\frac{\overline{S_{\text {tret }}}}{\bar{V}}\right)^{*} \Rightarrow \bar{I}=73.944 / 16.705^{\circ} \mathrm{A} \\
& \bar{I}_{1}=\left(\frac{\bar{S}_{1}}{\bar{V}}\right)^{*} \Rightarrow \bar{I}_{1}=100 / 30^{\circ} \mathrm{A} \\
& \bar{I}_{2}=\left(\frac{\bar{S}_{2}}{\bar{V}}\right)^{*} \Rightarrow \bar{I}_{2}=8010^{\circ} \mathrm{A}
\end{aligned}
$$

