Find the electric field and the voltage everywhere.

Find the electric field and the voltage everywhere.

Find the electric field and the voltage everywhere.

Find the electric field and the voltage everywhere.
From Gauss' law in integral form it is easy to derive the electric field.

$$
\oint \vec{E} \cdot d \vec{S}=\frac{Q}{\epsilon_{o}}
$$

Combining the results...

$$
\oint \vec{E} \cdot d \vec{S}=4 \pi r^{2} E_{r}(r)
$$

and..

In the region $\mathrm{r}<\mathrm{a}$:

$$
\text { In the region } r>a \text { : }
$$

$$
\frac{Q}{\epsilon_{o}}=\frac{\rho_{o}}{\epsilon_{o}} \frac{4}{3} \pi r^{3}
$$

$$
\frac{Q}{\epsilon_{o}}=\frac{\rho_{o}}{\epsilon_{o}} \frac{4}{3} \pi a^{3}
$$

Find the electric field and the voltage everywhere.
From Gauss' law in differential form it is easy to derive the electric field.

$$
\nabla \cdot \vec{E}=\frac{\rho_{o}}{\epsilon_{o}} \quad \text { By symmetry we assume } \vec{E}=E_{r}(r) \hat{r} .
$$

Find the electric field and the voltage everywhere.

Differential form: $\quad \vec{E}=-\nabla V$

$$
\begin{aligned}
& E_{r}(r)=-\frac{\partial V}{\partial r} \\
& -\frac{\partial V}{\partial r}=\left\{\begin{array}{ll}
\frac{\rho_{o} r}{3 \epsilon_{o}} & r<a \\
\frac{\rho_{o} a^{3}}{3 \epsilon_{o} r^{2}} & r \geq a
\end{array}\right\} \quad V=\left\{\begin{array}{ll}
-\frac{\rho_{o} r^{2}}{6 \epsilon_{o}}+A_{I} & r<a \\
\frac{\rho_{o} a^{3}}{3 \epsilon_{o} r}+A_{I I} & r \geq a
\end{array}\right\}
\end{aligned}
$$

$$
V=\left\{\begin{array}{ll}
-\frac{\rho_{o} r^{2}}{6 \epsilon_{o}}+A_{I} & r<a \\
\frac{\rho_{o} a^{3}}{3 \epsilon_{o} r}+A_{I I} & r \geq a
\end{array}\right\}
$$

Now let's find the voltage everywhere: $\quad E_{r}(r)=\left\{\begin{array}{cc}\frac{\rho_{o} r}{3 \epsilon_{o}} & r<a \\ \frac{\rho_{o} a^{3}}{3 \epsilon_{o} r^{2}} & r \geq a\end{array}\right\}$

Differential form: $\quad V=-\int_{A}^{B} \vec{E} \cdot d \vec{l}=V(A)-V(B)$

$$
\begin{aligned}
& \mathrm{r}<\mathrm{a} \\
&=-\int_{0}^{r} \frac{\rho_{o} r^{\prime}}{3 \epsilon_{o}} d r^{\prime}=\frac{-\rho_{o} r^{2}}{6 \epsilon_{o}} \\
& r>=\mathrm{a} \\
&=-\int_{0}^{r} \frac{\rho_{o} a^{3}}{3 \epsilon_{o} r^{2}} d r^{\prime}=\frac{\rho_{o} a^{3}}{3 \epsilon_{o} r}
\end{aligned}
$$

Find the electric field and the voltage everywhere.

Find the electric field and the voltage everywhere.

$$
\vec{E}=\frac{Q}{4 \pi \epsilon_{o} r^{2}} \hat{r}
$$

$$
\begin{aligned}
& \int_{s} \vec{E} \cdot d \vec{S}=\frac{Q}{\epsilon_{o}} \\
& \oint_{c} \vec{E} \cdot d \vec{l}=0
\end{aligned}
$$

Coulombs law

Maxwell's equations Integral form

$$
\nabla^{2} V=\frac{-\rho}{\epsilon_{o}}
$$

Maxwell's equations Differential form potential function

Find the electric field and the charge distribution that generated the field.

$$
\vec{E}=-\nabla V
$$

$$
V(x, y)=3 e^{-(x-2)^{2}} e^{-(y+3)^{2}}+e^{-(x+1)^{2}} e^{-(y-3)^{2} / 25}
$$

Find the negative of the gradient of V to retrieve the electric field magnitude ----

$$
\begin{aligned}
\vec{E} & =\left(-6(x-2) e^{-(x-2)^{2}} e^{-(y+3)^{2}}-2(x+1) e^{-(x+1)^{2}} e^{-(y-3)^{2} / 25}\right) \hat{x} \\
& +\left(-6(y+3) e^{-(x-2)^{2}} e^{-(y+3)^{2}}-2(y-3) e^{-(x+1)^{2}} e^{-(y-3)^{2} / 25}\right) \hat{y}
\end{aligned}
$$

$V(x, y, z)=x+2 \mathrm{yz}^{2}+x(y+3)$

