ECE 313: Final Exam

Friday, August 4, 2017, 8-10 a.m. ECEB 3017

Name: (in BLOCK CAPITALS)	
NetID:	
Signature:	
Instructions	
This exam is closed book and closed notes except that two 8.5"×11" sheets of notes is permitted: both sides may be used. No electronic equipment (cell phones, etc.) allowed.	
· · · · · · · · · · · · · · · · · · ·	Grading
The exam consists of 7 problems worth a total of 100 points. The problems are	1. 14 points
not weighted equally, so it is best for you to pace yourself accordingly. Write your answers in the spaces provided, and reduce common fractions to low-	2. 10 points
	3. 14 points
est terms, but DO NOT convert them to decimal fractions (for example, write	4. 14 points
$\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75).	5. 25 points
SHOW YOUR WORK; BOX YOUR ANSWERS. Answers without appropri-	6. 13 points
ate justification will receive very little credit. If you need extra space, use	7. 10 points
the back of the previous page. Draw a small box around each of your final numerical answers.	Total (100 points)

1. [14 points] A message source that produces a sequence of 4 bits of information is equally likely to be in one of three states: S_1 , S_2 , and S_3 . In state S_k , the 4 bit sequence can have at most k 1's, with all such 4 bit sequences being equally likely. For example, in state S_1 , the source can produce the sequences 0000, 1000, 0100, 0010, 0001 with each of sequences being produced with probability $\frac{1}{5}$.

Let A be event that the sequence 1010 was produced by the source.

(b) [6 points] Find
$$P(A)$$
.

Using total Probability |s_3| = |s_2| + (\frac{4}{3}) = |1 + 4 = 15 \\

 $P(A) = P(A|s_1) P(s_1) + P(A|s_2) P(s_2) + P(A|s_3) P(s_3) = \frac{1}{15}$
 $= \frac{1}{11} \left(\frac{1}{3}\right) + \left(\frac{1}{15}\right) \left(\frac{1}{3}\right) = \frac{26}{495}$

(c) [4 points] Find the probability that the source was in state S_2 given event A.

$$P(sz|A) = P(A|sz) P(sz) = \frac{1}{11} \left(\frac{1}{3}\right)$$

$$P(A) = \frac{1}{26}$$

$$P(A) = \frac{1}{26}$$

$$P(A) = \frac{1}{26}$$

- 2. [10 points] Consider a binary hypotheses testing problem with observation X. Under H_0 , $X \sim Binomial\left(72, \frac{1}{3}\right)$, while under H_1 , $X \sim Binomial\left(72, \frac{2}{3}\right)$. It is known that $\pi_0 = 0.9$.
 - (a) [6 points] Determine the MAP decision rule. Express the rule in terms of k as simply as possible. In case of a tie in likelihoods, declare H_1 to be the hypothesis.

$$A(h) = P_{1}(h) = \begin{cases} \frac{4}{h} & \frac{1}{3} & \frac{1}{4} & \frac{1}$$

(b) [4 points] Express the approximate value of $p_{false~alarm}$ for the MAP rule in terms of the Q function, where $Q(c) = \int_c^\infty \frac{1}{\sqrt{2\pi}} \exp(-u^2/2) du$. (To be definite, don't use the continuity correction.)

3. [14 points] Let c be a constant and X be a random variable with pdf

$$f_X(u) = \begin{cases} c & u \in [-1,1) \\ 2c & u \in [1,3] \\ 0 & \text{else.} \end{cases}$$

You may leave your answers to this problem in terms of c, except for part (a).

(a) [3 points] Obtain the value of the constant c.

$$\int_{-\Phi}^{\Phi} f_{x}[u] du = 1 = \text{area order corre} = 2e + 2(2e)$$

$$1 = 6e \Rightarrow c = 1$$

(b) [6 points] Determine the CDF $F_X(u)$ for all u.

(c) [5 points] Obtain E[sin(X)] You may leave your answer in terms of sin and cos.

$$E[sin(x)] = \int_{-\infty}^{\infty} sin(u) f_{x}(u) du = \int_{-\infty}^{\infty} sin(u) c du + \int_{-\infty}^{3} sin(u) c du$$

$$= c \left[-\cos u\right]_{-\infty}^{3} - 2 \cos u\right]_{-\infty}^{3} =$$

$$= -c \left[\cos(u) - \cos(u)\right] + 2 \left(\cos(u) - \cos(u)\right] =$$

$$= -c \left[\cos(u) - \cos(u)\right]_{-\infty}^{3}$$

$$= -c \left[\cos(u) - \cos(u)\right]_{-\infty}^{3}$$

- 4. [14 points] Joe fishes with an unusual strategy: he waits for three fish to jump, then throws a net immediately after seeing the third fish jump. Fish jump according to a Poisson process with parameter $\lambda = 0.1$ jumps per minute. Assume that Joe begins waiting at time zero; the first fish jumps at time T_1 , the second fish jumps at time T_2 and the third fish jumps at time T_3 . You may leave powers of e in your answer.
 - (a) [5 points] What's the probability that $T_3 \ge 40$ minutes?

(b) [5 points] Suppose that Joe sees the first fish jump at time $T_1 = u > 0$ minutes and the second fish jump at time $T_2 = v > u > 0$ minutes. What is the conditional pdf $f_{T_3|T_1,T_2}(t|u,v)$ for all t?

(c) [4 points] What is $E[T_3|T_1 = u, T_2 = v]$, for 0 < u < v?

5. [25 points] Let X and Y be jointly continuous random variables with joint pdf \checkmark

$$f_{X,Y}(u,v) = \begin{cases} cv & v \in [0,1], u \in [v,2] \\ 0 & \text{else,} \end{cases}$$

for a constant c. You may leave this problem's answers in terms of c, except part (a).

(a) [3 points] Determine the value of the constant c.

$$SS_{n^2} f_{x,y}(u,v) dudw = 1 = S_0' \int_V^2 cv dudv = c \int_0' V \int_V^2 du dv$$

$$= c \frac{2}{3} = 0 \left[c = \frac{3}{2} \right]$$

(b) [4 points] Obtain the marginal pdf $f_Y(v)$ for all v.

$$f_{\gamma}(v) = \int_{-\infty}^{\infty} f_{x,\gamma}(u,v) du = \int_{-\infty}^{\infty} cvdu = cv(z-v)$$

$$= \int_{-\infty}^{\infty} cv(z-v) \quad v \in C_{0,1}$$

$$= \int_{-\infty}^{\infty} cvdu = cv(z-v)$$

(c) [4 points] Obtain the conditional pdf $f_{X|Y}(u|v)$ for all u and v.

$$f_{X,Y}(u,v) = \begin{cases} cv & v \in [0,1], u \in [v,2] \\ 0 & \text{else,} \end{cases}$$

Obtain the best unconstrained MMSE estimator of X from Y, $\hat{X} = g^*(Y)$. Notice that you are not estimating Y from X.

(e) [6 points] Obtain the best linear MMSE estimator of X from Y, $\hat{X} = L^*(Y) = \hat{E}[X|Y]$. Notice that you are not estimating Y from X.

6. [13 points] Let X and Y be jointly uniform random variables with joint pdf

$$f_{X,Y}(u,v) = \left\{ \begin{array}{ll} \frac{2}{3} & v \in [0,1], u \in [v,2] \\ 0 & \text{else}, \end{array} \right.$$

(a) [5 points] Obtain $P\{Y - X^2 \le 0\}$. $P Y \le X^2$

$$\frac{1}{2} \int_{0}^{2} \int_{0}^{2} \frac{2}{3} du dv = \frac{2}{3} \int_{0}^{2} \int_{0}^{2} du dv$$

(b) [8 points] Let $Z = \frac{1}{2}X - \frac{1}{2}Y$. Obtain the CDF $F_Z(s)$ for all s.

@
$$X=L=0$$
 $Y=0$
2-25=0=)5:

For s & (0, 2) Fz(s) = So Sv = dudu = 4s

$$=) \left\{ \frac{1}{7} \left(\frac{1}{5} \right) \right\} = \left$$

7. [10 points] (2 points per answer)

No partial credit. In order to discourage guessing, 2 points will be deducted for each incorrect answer (no penalty or gain for blank answers). A net negative score will reduce your total exam score.

(a) Let X and Y be jointly random variables

If E[X+Y] = E[X] + E[Y] then X and Y are independent. This always folds, even if not

- If Var(X+Y) = Var(X) + Var(Y) then X and Y are independent.

 Thus holds also if Yill are just concern to ted Vor(X+Y) = Var(X) + Var(Y) + Var(Y) + Var(Y)
- If $f_{X,Y}(1,2.5) = f_X(1)f_Y(2.5)$ then X and Y are independent. Thus must hold computes as the plane , not just at one point. $f_{X,Y}(u,u) = f_X(u)f_Y(u)$
- If X and Y are independent then $E[X^2 sin(Y)] = E[X^2] E[sin(Y)]$ If independent fry land = $f_{X,y} (a_{1,y}) = f_{Y}(a_1) f_{Y}(a_2)$ $E[X^2 sin y] = \int \int u^2 sin y f_{Y,y}(a_{1,y}) du dy$ $= \int u^2 f_{X}(a_1) da_2 \int sin y f_{Y}(a_1) dy$ $= E[X^2] E[sin(Y)]$
- If $\hat{E}[Y|X] = aX + b$ then $\hat{E}[X|Y] = \frac{1}{a}Y \frac{1}{a}b$ For example, if X, Y are in dependent and $M_X \neq M_Y$ then $\hat{E}[Y|Y] = M_Y$ 8 $\hat{E}[Y|Y] = M_Y$