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1. [18 points] Suppose under hypothesis H1, X has pdf f1(u) = 1
2
− 1

4
|u| for u ∈ (−2, 2),

but under hypothesis H0, X is uniformly distributed between (−1, 1). Let π0 = 1
4
.

(a) Obtain the MAP decision rule.

Solution: The likelihood ratio is given by Λ(u) = f1(u)
f0(u)

. If u /∈ (−1, 1), then

f0(u) = 0 and hence we chose H1.

For u ∈ (−1, 1), Λ(u) =
1
2
− 1

4
|u|

1
2

= 1− 1
2
|u|. The MAP rule compares the likelihood

ratio to the threshold π0
π1

=
1
4
3
4

= 1
3
. We have Λ(u) > 1

3
, which means |u| < 4

3
.

However, 4
3
> 1 so that H1 is always chosen for u ∈ (−1, 1).

Hence the MAP rule is the following: declare H1 always.

(b) Obtain pfalse alarm for the MAP rule.

Solution: H1 is always declared under the MAP rule, hence we obtain

pfalse alarm = P{declare H1|H0} = 1.

(c) Obtain pmiss for the MAP rule.

Solution: H1 is always declared under the MAP rule, hence we obtain

pmiss = P{declare H0|H1} = 0.

2. [20 points] Consider a Poisson process of rate λ.

(a) What is the probability that there are no arrivals in the interval [0, 2]?

Solution: Let Nt be the number of arrivals in [0, t]. Then N2 ∼ Poi(2λ) because
the length if the time interval is 2 time units. Hence,

P (N2 = 0) =
e−2λ(2λ)0

0!
= e−2λ.

(b) What is the probability that there are two or fewer arrivals in the interval [0, 2]?

Solution:

P (N2 ≤ 2) =
e−2λ(2λ)0

0!
+
e−2λ(2λ)1

1!
+
e−2λ(2λ)2

2!
= e−2λ

(
1 + 2λ+ 2λ2

)
.



(c) Given that there are two arrivals during [0, 2], what is the probability that there
is one arrival during [0, 0.5]?

Solution:

P (N0.5 = 1|N2 = 2) =
P (N0.5 = 1, N2 = 2)

P (N2 = 2)
=
P (N0.5 = 1, N2 −N0.5 = 1)

P (N2 = 2)

=
P (N0.5 = 1)P (N2 −N0.5 = 1)

P (N2 = 2)
=

(
e−0.5λ(0.5λ)1

1!

)(
e−1.5λ(1.5λ)1

1!

)
e−2λ(2λ)2

2!

=
3

8
,

because N0.5 ∼ Poi(0.5λ) and N2 −N0.5 ∼ Poi(1.5λ).

(d) Obtain the probability that the second arrival occurs before a fixed time t > 0.

Solution: In order for the second arrival to occur before time t, there needs to be
at least 2 arrivals before time t. Hence,

P{Nt ≥ 2} = 1− P{Nt < 2} = 1−
(
e−tλ(tλ)0

0!
+
e−tλ(tλ)1

1!

)
= 1− e−tλ (1 + tλ) ,

because Nt ∼ Poi(tλ).

3. [18 points] Consider a two stage experiment. First, roll a die, with equiprobable sides
labeled 1, 2, 3, 4, 4, 5 (notice that 4 is on two sides of the die and 6 is not on the die).
Let X denote the number showing, and then flip a biased coin X times, where tails
shows 3

4
of the time. Let Y be the number of times tails shows.

(a) Obtain P{Y = 3|X = 4}.
Solution: Given that X = 4, then Y ∼ Binomial

(
4, 3

4

)
because the coin will be

flipped 4 times and the probability of tails in each flip is 3
4
. Therefore,

P{Y = 3|X = 4} =
(
4
3

) (
3
4

)3 (1
4

)1
= 27

64
.

(b) Obtain P{Y = 3}. Recall that 4 is on two sides of the die and 6 is not on the die.

Solution: Given that X = k, then Y ∼ Binomial
(
k, 3

4

)
because the coin will be

flipped k times and the probability of tails in each flip is 3
4
.

Using the law of total probability,

P{Y = 3} =
∑5

k=0 P{Y = 3|X = k}P{X = k} =
∑5

k=3

(
k
3

) (
3
4

)3 (1
4

)k−3
P{X =

k} =
(
3
3

) (
3
4

)3 (1
4

)0 1
6

+
(
4
3

) (
3
4

)3 (1
4

)1 2
6

+
(
5
3

) (
3
4

)3 (1
4

)2 1
6

= 261
1024

.

(c) Obtain P{X = 4|Y = 3}.
Solution: Using Bayes rule and the result from part (a),

P{X = 4|Y = 3} =
P{Y = 3|X = 4}P{X = 4}

P{Y = 3}
=

27
64

2
6

261
1024

=
16

29

.

4. [22 points] Let X be a geometric random variable with parameter p, and let Y be be a
geometric random variable with parameter q. Assume that X and Y are independent.
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(a) Suppose (only for this part) that p = 2
3

and that q = 1
4
. Obtain E[2X + 3Y − 1]

and V ar(2X + 3Y − 1).

Solution: If X ∼ Geometric(p), then E[X] = 1
p

and V ar(X) = 1−p
p2

.

By linearity of expectation E[2X + 3Y − 1] = 2E[X] + 3E[Y ] − 1 = 2
(

1
2
3

)
+

3
(

1
1
4

)
− 1 = 14.

And from scaling of variance and independence of X and Y , V ar(2X + 3Y − 1) =

22V ar(X) + 32V ar(Y ) = 4

(
1− 2

3

( 2
3)

2

)
+ 9

(
1− 1

4

( 1
4)

2

)
= 111.

(b) Suppose (only for this part) that p = 2
3

and that q = 1
4
. Obtain Cov(2X, 3Y ).

Solution: From the scaling of covariance and independence of X and Y ,
Cov(2X, 3Y ) = 2(3)Cov(X, Y ) = 0.

(c) Obtain the joint pmf pX,Y (i, j) for all i and j, and express it in terms of p and q.

Solution: If X ∼ Geometric(p), then pX(i) = (1− p)i−1p for integer i ≥ 1.
From the independence of X and Y ,
pX,Y (i, j) = pX(i)pY (j) = (1− p)i−1p(1− q)j−1q for integer i, j ≥ 1.

(d) Find the conditional pmf pX|Y (i|j) for all i and j. Express it in terms of p and q.

Solution: From the independence ofX and Y and the fact thatX ∼ Geometric(p),
pX|Y (i|j) = pX(i) = (1− p)i−1p for integer i ≥ 1.

(e) Suppose that you don’t know p but you perform the experiment once and observe
that X2 = 16. Obtain the maximum likelihood estimate p̂ML.

Solution: The likelihood of observing X2 = 16 is the same as the likelihood of
observing X = 4, which is pX(4) = (1 − p)4−1p. Maximizing this likelihood (say
taking derivatives) yields p̂ML = 1

4
.

5. [22 points] Let X and Y be jointly uniform random variables with joint pdf fX,Y (u, v)
with support in the shaded region below, where c ≥ 0 is a constant.

(a) Let c = 1
2
. Obtain the joint pdf fX,Y (u, v) for all points in the 2− d plane.

Solution: For jointly uniform random variables, the joint pdf fX,Y (u, v) is simply
inversely proportional to the shaded area

A =

[
−1

2
−
(
−2
(
1
2

))] (
1− 1

2

)
2

+

(
2− 1

2
−
(
−1

2

))(
1− 1

2

)
=

9

8
.

Therefore, fX,Y (u, v) = 1
9
8

= 8
9

for −1 ≤ u ≤ 3
2

and 0 ≤ v ≤ min
{

1
2
, u+ 1

}
.

(b) Again, let c = 1
2
. Obtain the marginal pdf fX(u) for all u.
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Solution: To obtain the marginal of X we need to integrate the joint pdf over
all values of Y : fX(u) =

∫∞
−∞ fX,Y (u, v)dv.

fX(u) =


∫ u+1

0
8
9
dv = 8

9
(u+ 1) −1 ≤ u ≤ −1

2∫ 1
2

0
8
9
dv = 4

9
−1

2
≤ u ≤ 3

2
0 else

(c) Again, let c = 1
2
. Obtain the conditional pdf fY |X(v|u) for all u and v.

Solution: The conditional pdf fY |X(v|u) =
fX,Y (u,v)

fX(u)
when fX(u) > 0. From parts

(a) and (b),

fY |X(v|u) =


undefined u /∈

[
−1, 3

2

]
8
9

8
9
(u+1)

= 1
u+1

−1 ≤ u ≤ −1
2
, 0 ≤ v ≤ u+ 1

8
9
4
9

= 2 −1
2
≤ u ≤ 3

2
, 0 ≤ v ≤ 1

2

0 else

.

(d) Find the value of the constant c such that X and Y are independent.

Solution: A condition for independence of two random variables is that the
support of their joint pdf has to be a product set, and this condition is sufficient
for independence if the random variables are jointly uniform. Therefore, c must
be such that the shaded area is a rectangle: c = 0.

6. [18 points] SupposeX and Y are independent Gaussian random variables with µX = 3,
µY = 0, σ2

X = 7 and σ2
Y = 9. Let Z = X + Y . NOTE: you can leave your answers for

this problem in terms of the Q function.

(a) Obtain P (X < 1).

Solution: X is a Gaussian random variable with mean 3 and variance 7, hence.

P (X < 1) = P

(
X − 3√

7
<

1− 3√
7

)
= Φ

(
− 2√

7

)
= Q

(
2√
7

)

(b) Obtain P (Z < 1).

Solution: Observe that Z is a Gaussian random variable with mean E[Z] =
E[X + Y ] = E[X] + E[Y ] = 3 + 0 = 3 and variance V ar(Z) = V ar(X + Y ) =
V ar(X) + V ar(Y ) = 7 + 9 = 16 because X and Y are independent. Hence,

P (Z < 1) = P

(
Z − 3

4
<

1− 3

4

)
= Φ(−0.5) = Q(0.5)
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(c) Obtain the best MMSE the linear estimator Ê[X|Z].

Solution: The best MMSE the linear estimator Ê[X|Z] is given by

Ê[X|Z] =
Cov(X,Z)

V ar(Z)
(Z − µZ) + µX =

7

16
(Z − 3) + 3,

because Cov(X,Z) = Cov(X,X + Y ) = V ar(X) + Cov(X, Y ) = 7 + 0 = 7.

7. [18 points] A store sells two types of phones, model A and model I. An A phone
battery drains after X days, where X ∼ Exp(3). An I phone battery drains after Y
days, where Y ∼ Exp(2). The random variables X and Y are independent.

(a) Given that the battery in an A phone has not drained in the the first u days, what
is the expected time before its battery drains?

Solution: The expected time before the battery drains, given that the battery
has not drained in the the first u days, is

E[X|X > u] = E[Z + u] =
1

λX
+ u =

1

3
+ u,

where we used the memoryless property of the exponential random variable X,
and Z ∼ Exp(3).

(b) Suppose that the I phone is turned on after the A phone’s battery drains. Given
that the battery in an A phone has not drained in the the first u days, what is the
expected total time before both batteries drain?

Solution:

E[X + Y |X > u] = E[X|X > u] + E[Y ] =
1

3
+ u+

1

λY
=

1

3
+ u+

1

2
=

5

6
+ u,

where we used the linearity of expectation, the memoryless property of the ex-
ponential random variable X, Z ∼ Exp(3), and the fact the Y is independent of
X.

(c) What is the probability that an A phone battery drains before an I phone battery?

Solution: The probability that an A phone battery drains before an I phone
battery is given by

P{X < Y } =

∫ ∞
0

∫ v

0

3e−3u2e−2v du dv =

∫ ∞
0

(1− e−3v)2e−2v dv =
3

3 + 2
=

3

5
.

8. [22 points] Let c be a constant and X be a random variable with pdf.

fX(u) =


1
2

u ∈ [−1, 0),
4
9
u2 u ∈ [0, c],

0 else.
.

You can leave your answers to this problem in terms of c, except for part (a).
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(a) Obtain the value of the constant c in order for fX(u) to be a valid pdf.

Solution: The pdf has to be non-negative and it has to integrate to one. It is
clearly non-negative and

1 =

∫ ∞
∞

fX(u)du =

∫ 0

−1

1

2
du+

∫ c

0

4

9
u2du =

1

2
+

4

27
c3,

so that c =
(
27
8

)1/3
= 3

2
.

(b) Determine the CDF FX(u) for all u. You can leave your answer in terms of the
constant c.

Solution: By definition, FX(u) = P{X ≤ u}. From the support of fX we can
clearly see that FX(u) = 0 if u < −1 and FX(u) = 1 if u > c.
If u ∈ [−1, 0) then

FX(u) =

∫ u

−∞
fX(v)dv =

∫ u

−1

1

2
du =

u+ 1

2
.

If u ∈ [0, c] then

FX(u) =

∫ u

−∞
fX(v)dv =

∫ 0

−1

1

2
du+

∫ u

0

4

9
u2du =

1

2
+

4

27
u3.

So that

FX(u) =


0 u < −1,
u+1
2

u ∈ [−1, 0),
1
2

+ 4
27
u3 u ∈ [0, c],

1 u > c

,

(c) Obtain E[X] and E[X3]. Recall that fX(u) =


1
2

u ∈ [−1, 0),
4
9
u2 u ∈ [0, c],

0 else.
.

Solution: By definition

E[X] =

∫ ∞
∞

ufX(u)du =

∫ 0

−1
u

1

2
du+

∫ c

0

u
4

9
u2du = −1

4
+
c4

9
.

By LOTUS

E[X3] =

∫ ∞
∞

u3fX(u)du =

∫ 0

−1
u3

1

2
du+

∫ c

0

u3
4

9
u2du = −1

8
+

4

54
c6.

(d) Let Y = −X3. Obtain the CDF FY (v) for all v.

Solution: Notice that X ∈ [−1, c], so that Y ∈ [−c3, 1]. By definition,

FY (v) = P{Y ≤ v} = P{−X3 ≤ v} = P{X ≥ − 3
√
v} = 1− FX(− 3

√
v)

=


0 v < −c3,
1−

(
1
2

+ 4
27

(− 3
√
v)3
)

= 1
2

+ 4
27
v v ∈ [−c3, 0),

1−
(
− 3√v+1

2

)
= 1+ 3√v

2
v ∈ [0, 1],

1 v > 1
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9. [12 points] Suppose that an urn contains g green balls and r red balls. All balls are
equally likely to be taken out of the urn.

(a) Suppose that you grab a total of k balls (no balls are put back). What is the
probability of grabbing x green balls?

Solution: Since the experiment is under a uniform probability distribution, we
can solve this problem by counting. We want to count the number of ways to grab
x green balls in a total of k balls grabbed. We first select x out of g green balls
and then independently select k − x out of r red balls. The number of ways to
select x out of g green balls is given by

(
g
x

)
, and the number of ways to select select

k − x out of r red balls is
(

r
k−x

)
. So, there are

(
g
x

)(
r

k−x

)
ways of having x green

balls among the k grabbed balls. We normalize by the total number of ways to
grab k balls, to get the solution: (

g
x

)(
r

k−x

)(
g+r
k

) .

(b) Now suppose that all k balls are returned to the urn, and this time you grab a
total of m balls. Let A be the event that among the set of m balls, exactly 2 green
balls are included that were also grabbed the first time. Find P (A).

Solution: Again, we use counting to solve for the probability. We decompose
the counting problem into two steps: we first select the two green balls that are
grabbed both times, and then we independently select the remaining m− 2 balls
from the g+r−x balls that were not green balls grabbed the first time. Therefore
we have

(
x
2

)(
g+r−x
m−2

)
, giving us the probability of(

x
2

)(
g+r−x
m−2

)(
g+r
m

) .

10. [30 points] (3 points per answer)
In order to discourage guessing, 3 points will be deducted for each incorrect answer (no
penalty or gain for blank answers). A net negative score will reduce your total exam
score.

(a) A, B and C are three events such that 0 < P (A), P (B), P (C) < 1.

TRUE FALSE
� � P (A|B) + P (Ac|B) = 1.

� � P (A|B)P (B) + P (Ac|B)P (B) = P (A).

� � If P (A|B) = P (B|A), then P (A) = P (B).

Solution: True,False,False
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(b) Consider a binary hypothesis testing problem. Denote the probabilities of false
alarm and missed detection for the ML decision rule by PML

FA and PML
MD, respec-

tively. Similarly, denote the probabilities of false alarm and missed detection for
the MAP decision rule by PMAP

FA and PMAP
MD , respectively.

TRUE FALSE
� � PML

FA + PML
MD = 1.

� � PMAP
FA ≤ PML

FA .

� � π0P
ML
FA + π1P

ML
MD ≥ π0P

MAP
FA + π1P

MAP
MD .

� � If π0 = 0.5 then PML
MD = PMAP

MD .

Solution: False,False,True,True

(c) Suppose X and Y are jointly continuous random variables.

TRUE FALSE

� � If E[Y |X] = 3X + 1, then Ê[Y |X] = 3X + 1.

� � If Ê[Y |X] = 3X + 1 then Ê[X|Y ] = 1
3
Y − 1

3
.

� � If Ê[Y |X] is constant, then Ê[X|Y ] is also constant.

Solution: True, False, True.
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