ECE 313: Conflict Final Exam

Thursday, August 4, 2016, 7-10 p.m.
ECEB 1013

1. [18 points] Suppose under hypothesis H_{1}, X has pdf $f_{1}(u)=\frac{1}{2}-\frac{1}{4}|u|$ for $u \in(-2,2)$, but under hypothesis H_{0}, X is uniformly distributed between $(-1,1)$. Let $\pi_{0}=\frac{1}{4}$.
(a) Obtain the MAP decision rule.

Solution: The likelihood ratio is given by $\Lambda(u)=\frac{f_{1}(u)}{f_{0}(u)}$. If $u \notin(-1,1)$, then $f_{0}(u)=0$ and hence we chose H_{1}.
For $u \in(-1,1), \Lambda(u)=\frac{\frac{1}{2}-\frac{1}{4}|u|}{\frac{1}{2}}=1-\frac{1}{2}|u|$. The MAP rule compares the likelihood ratio to the threshold $\frac{\pi_{0}}{\pi_{1}}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$. We have $\Lambda(u)>\frac{1}{3}$, which means $|u|<\frac{4}{3}$. However, $\frac{4}{3}>1$ so that H_{1} is always chosen for $u \in(-1,1)$.
Hence the MAP rule is the following: declare H_{1} always.
(b) Obtain $p_{\text {false alarm }}$ for the MAP rule.

Solution: H_{1} is always declared under the MAP rule, hence we obtain

$$
p_{\text {false alarm }}=P\left\{\text { declare } H_{1} \mid H_{0}\right\}=1 .
$$

(c) Obtain $p_{\text {miss }}$ for the MAP rule.

Solution: H_{1} is always declared under the MAP rule, hence we obtain

$$
p_{\text {miss }}=P\left\{\text { declare } H_{0} \mid H_{1}\right\}=0
$$

2. [20 points] Consider a Poisson process of rate λ.
(a) What is the probability that there are no arrivals in the interval $[0,2]$?

Solution: Let N_{t} be the number of arrivals in $[0, t]$. Then $N_{2} \sim \operatorname{Poi}(2 \lambda)$ because the length if the time interval is 2 time units. Hence,

$$
P\left(N_{2}=0\right)=\frac{e^{-2 \lambda}(2 \lambda)^{0}}{0!}=e^{-2 \lambda}
$$

(b) What is the probability that there are two or fewer arrivals in the interval $[0,2]$? Solution:

$$
P\left(N_{2} \leq 2\right)=\frac{e^{-2 \lambda}(2 \lambda)^{0}}{0!}+\frac{e^{-2 \lambda}(2 \lambda)^{1}}{1!}+\frac{e^{-2 \lambda}(2 \lambda)^{2}}{2!}=e^{-2 \lambda}\left(1+2 \lambda+2 \lambda^{2}\right) .
$$

(c) Given that there are two arrivals during [0, 2], what is the probability that there is one arrival during $[0,0.5]$?
Solution:

$$
\begin{aligned}
P\left(N_{0.5}=1 \mid N_{2}=2\right) & =\frac{P\left(N_{0.5}=1, N_{2}=2\right)}{P\left(N_{2}=2\right)}=\frac{P\left(N_{0.5}=1, N_{2}-N_{0.5}=1\right)}{P\left(N_{2}=2\right)} \\
& =\frac{P\left(N_{0.5}=1\right) P\left(N_{2}-N_{0.5}=1\right)}{P\left(N_{2}=2\right)}=\frac{\left(\frac{e^{-0.5 \lambda}(0.5 \lambda)^{1}}{1!}\right)\left(\frac{e^{-1.5 \lambda}(1.5 \lambda)^{1}}{1!}\right)}{\frac{e^{-2 \lambda}(2 \lambda)^{2}}{2!}} \\
& =\frac{3}{8}
\end{aligned}
$$

because $N_{0.5} \sim \operatorname{Poi}(0.5 \lambda)$ and $N_{2}-N_{0.5} \sim \operatorname{Poi}(1.5 \lambda)$.
(d) Obtain the probability that the second arrival occurs before a fixed time $t>0$.

Solution: In order for the second arrival to occur before time t, there needs to be at least 2 arrivals before time t. Hence,
$P\left\{N_{t} \geq 2\right\}=1-P\left\{N_{t}<2\right\}=1-\left(\frac{e^{-t \lambda}(t \lambda)^{0}}{0!}+\frac{e^{-t \lambda}(t \lambda)^{1}}{1!}\right)=1-e^{-t \lambda}(1+t \lambda)$,
because $N_{t} \sim \operatorname{Poi}(t \lambda)$.
3. [18 points] Consider a two stage experiment. First, roll a die, with equiprobable sides labeled $1,2,3,4,4,5$ (notice that 4 is on two sides of the die and 6 is not on the die). Let X denote the number showing, and then flip a biased coin X times, where tails shows $\frac{3}{4}$ of the time. Let Y be the number of times tails shows.
(a) Obtain $P\{Y=3 \mid X=4\}$.

Solution: Given that $X=4$, then $Y \sim \operatorname{Binomial}\left(4, \frac{3}{4}\right)$ because the coin will be flipped 4 times and the probability of tails in each flip is $\frac{3}{4}$. Therefore, $P\{Y=3 \mid X=4\}=\binom{4}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{1}=\frac{27}{64}$.
(b) Obtain $P\{Y=3\}$. Recall that 4 is on two sides of the die and 6 is not on the die.

Solution: Given that $X=k$, then $Y \sim \operatorname{Binomial}\left(k, \frac{3}{4}\right)$ because the coin will be flipped k times and the probability of tails in each flip is $\frac{3}{4}$.
Using the law of total probability,
$P\{Y=3\}=\sum_{k=0}^{5} P\{Y=3 \mid X=k\} P\{X=k\}=\sum_{k=3}^{5}\binom{k}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{k-3} P\{X=$ $k\}=\binom{3}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{0} \frac{1}{6}+\binom{4}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{1} \frac{2}{6}+\binom{5}{3}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2} \frac{1}{6}=\frac{261}{1024}$.
(c) Obtain $P\{X=4 \mid Y=3\}$.

Solution: Using Bayes rule and the result from part (a),

$$
P\{X=4 \mid Y=3\}=\frac{P\{Y=3 \mid X=4\} P\{X=4\}}{P\{Y=3\}}=\frac{\frac{27}{64} \frac{2}{6}}{\frac{261}{1024}}=\frac{16}{29}
$$

4. [22 points] Let X be a geometric random variable with parameter p, and let Y be be a geometric random variable with parameter q. Assume that X and Y are independent.
(a) Suppose (only for this part) that $p=\frac{2}{3}$ and that $q=\frac{1}{4}$. Obtain $E[2 X+3 Y-1]$ and $\operatorname{Var}(2 X+3 Y-1)$.
Solution: If $X \sim \operatorname{Geometric}(p)$, then $E[X]=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.
By linearity of expectation $E[2 X+3 Y-1]=2 E[X]+3 E[Y]-1=2\left(\frac{1}{\frac{2}{3}}\right)+$ $3\left(\frac{1}{\frac{1}{4}}\right)-1=14$.
And from scaling of variance and independence of X and $Y, \operatorname{Var}(2 X+3 Y-1)=$ $2^{2} \operatorname{Var}(X)+3^{2} \operatorname{Var}(Y)=4\left(\frac{1-\frac{2}{3}}{\left(\frac{2}{3}\right)^{2}}\right)+9\left(\frac{1-\frac{1}{4}}{\left(\frac{1}{4}\right)^{2}}\right)=111$.
(b) Suppose (only for this part) that $p=\frac{2}{3}$ and that $q=\frac{1}{4}$. Obtain $\operatorname{Cov}(2 X, 3 Y)$. Solution: From the scaling of covariance and independence of X and Y, $\operatorname{Cov}(2 X, 3 Y)=2(3) \operatorname{Cov}(X, Y)=0$.
(c) Obtain the joint pmf $p_{X, Y}(i, j)$ for all i and j, and express it in terms of p and q.

Solution: If $X \sim \operatorname{Geometric}(p)$, then $p_{X}(i)=(1-p)^{i-1} p$ for integer $i \geq 1$. From the independence of X and Y, $p_{X, Y}(i, j)=p_{X}(i) p_{Y}(j)=(1-p)^{i-1} p(1-q)^{j-1} q$ for integer $i, j \geq 1$.
(d) Find the conditional pmf $p_{X \mid Y}(i \mid j)$ for all i and j. Express it in terms of p and q.

Solution: From the independence of X and Y and the fact that $X \sim \operatorname{Geometric}(p)$, $p_{X \mid Y}(i \mid j)=p_{X}(i)=(1-p)^{i-1} p$ for integer $i \geq 1$.
(e) Suppose that you don't know p but you perform the experiment once and observe that $X^{2}=16$. Obtain the maximum likelihood estimate $\hat{p}_{M L}$.
Solution: The likelihood of observing $X^{2}=16$ is the same as the likelihood of observing $X=4$, which is $p_{X}(4)=(1-p)^{4-1} p$. Maximizing this likelihood (say taking derivatives) yields $\hat{p}_{M L}=\frac{1}{4}$.
5. [22 points] Let X and Y be jointly uniform random variables with joint pdf $f_{X, Y}(u, v)$ with support in the shaded region below, where $c \geq 0$ is a constant.

(a) Let $c=\frac{1}{2}$. Obtain the joint pdf $f_{X, Y}(u, v)$ for all points in the $2-d$ plane.

Solution: For jointly uniform random variables, the joint $\operatorname{pdf} f_{X, Y}(u, v)$ is simply inversely proportional to the shaded area

$$
A=\frac{\left[-\frac{1}{2}-\left(-2\left(\frac{1}{2}\right)\right)\right]\left(1-\frac{1}{2}\right)}{2}+\left(2-\frac{1}{2}-\left(-\frac{1}{2}\right)\right)\left(1-\frac{1}{2}\right)=\frac{9}{8} .
$$

Therefore, $f_{X, Y}(u, v)=\frac{1}{9}=\frac{8}{9}$ for $-1 \leq u \leq \frac{3}{2}$ and $0 \leq v \leq \min \left\{\frac{1}{2}, u+1\right\}$.
(b) Again, let $c=\frac{1}{2}$. Obtain the marginal pdf $f_{X}(u)$ for all u.

Solution: To obtain the marginal of X we need to integrate the joint pdf over all values of $Y: f_{X}(u)=\int_{-\infty}^{\infty} f_{X, Y}(u, v) d v$.
$f_{X}(u)= \begin{cases}\int_{0}^{u+1} \frac{8}{9} d v=\frac{8}{9}(u+1) & -1 \leq u \leq-\frac{1}{2} \\ \int_{0}^{\frac{1}{2}} \frac{8}{9} d v=\frac{4}{9} & -\frac{1}{2} \leq u \leq \frac{3}{2} \\ 0 & \text { else }\end{cases}$
(c) Again, let $c=\frac{1}{2}$. Obtain the conditional $\operatorname{pdf} f_{Y \mid X}(v \mid u)$ for all u and v.

Solution: The conditional pdf $f_{Y \mid X}(v \mid u)=\frac{f_{X, Y}(u, v)}{f_{X}(u)}$ when $f_{X}(u)>0$. From parts (a) and (b),
$f_{Y \mid X}(v \mid u)=\left\{\begin{array}{ll}\text { undefined } & u \notin\left[-1, \frac{3}{2}\right] \\ \frac{8}{9} \\ \frac{8}{\frac{8}{4}(u+1)}=\frac{1}{u+1} & -1 \leq u \leq-\frac{1}{2}, 0 \leq v \leq u+1 \\ \frac{8}{9}=2 & -\frac{1}{2} \leq u \leq \frac{3}{2}, 0 \leq v \leq \frac{1}{2} \\ 0 & \text { else }\end{array}\right.$.
(d) Find the value of the constant c such that X and Y are independent.

Solution: A condition for independence of two random variables is that the support of their joint pdf has to be a product set, and this condition is sufficient for independence if the random variables are jointly uniform. Therefore, c must be such that the shaded area is a rectangle: $c=0$.
6. [18 points] Suppose X and Y are independent Gaussian random variables with $\mu_{X}=3$, $\mu_{Y}=0, \sigma_{X}^{2}=7$ and $\sigma_{Y}^{2}=9$. Let $Z=X+Y$. NOTE: you can leave your answers for this problem in terms of the Q function.
(a) Obtain $P(X<1)$.

Solution: X is a Gaussian random variable with mean 3 and variance 7, hence.

$$
P(X<1)=P\left(\frac{X-3}{\sqrt{7}}<\frac{1-3}{\sqrt{7}}\right)=\Phi\left(-\frac{2}{\sqrt{7}}\right)=Q\left(\frac{2}{\sqrt{7}}\right)
$$

(b) Obtain $P(Z<1)$.

Solution: Observe that Z is a Gaussian random variable with mean $E[Z]=$ $E[X+Y]=E[X]+E[Y]=3+0=3$ and variance $\operatorname{Var}(Z)=\operatorname{Var}(X+Y)=$ $\operatorname{Var}(X)+\operatorname{Var}(Y)=7+9=16$ because X and Y are independent. Hence,

$$
P(Z<1)=P\left(\frac{Z-3}{4}<\frac{1-3}{4}\right)=\Phi(-0.5)=Q(0.5)
$$

(c) Obtain the best MMSE the linear estimator $\hat{E}[X \mid Z]$.

Solution: The best MMSE the linear estimator $\hat{E}[X \mid Z]$ is given by

$$
\hat{E}[X \mid Z]=\frac{\operatorname{Cov}(X, Z)}{\operatorname{Var}(Z)}\left(Z-\mu_{Z}\right)+\mu_{X}=\frac{7}{16}(Z-3)+3
$$

because $\operatorname{Cov}(X, Z)=\operatorname{Cov}(X, X+Y)=\operatorname{Var}(X)+\operatorname{Cov}(X, Y)=7+0=7$.
7. [18 points] A store sells two types of phones, model A and model I. An A phone battery drains after X days, where $X \sim \operatorname{Exp}(3)$. An I phone battery drains after Y days, where $Y \sim \operatorname{Exp}(2)$. The random variables X and Y are independent.
(a) Given that the battery in an A phone has not drained in the the first u days, what is the expected time before its battery drains?
Solution: The expected time before the battery drains, given that the battery has not drained in the the first u days, is

$$
E[X \mid X>u]=E[Z+u]=\frac{1}{\lambda_{X}}+u=\frac{1}{3}+u
$$

where we used the memoryless property of the exponential random variable X, and $Z \sim \operatorname{Exp}(3)$.
(b) Suppose that the I phone is turned on after the A phone's battery drains. Given that the battery in an A phone has not drained in the the first u days, what is the expected total time before both batteries drain?

Solution:

$$
E[X+Y \mid X>u]=E[X \mid X>u]+E[Y]=\frac{1}{3}+u+\frac{1}{\lambda_{Y}}=\frac{1}{3}+u+\frac{1}{2}=\frac{5}{6}+u
$$

where we used the linearity of expectation, the memoryless property of the exponential random variable $X, Z \sim \operatorname{Exp}(3)$, and the fact the Y is independent of X.
(c) What is the probability that an A phone battery drains before an I phone battery?

Solution: The probability that an A phone battery drains before an I phone battery is given by

$$
P\{X<Y\}=\int_{0}^{\infty} \int_{0}^{v} 3 e^{-3 u} 2 e^{-2 v} d u d v=\int_{0}^{\infty}\left(1-e^{-3 v}\right) 2 e^{-2 v} d v=\frac{3}{3+2}=\frac{3}{5}
$$

8. [22 points] Let c be a constant and X be a random variable with pdf.

$$
f_{X}(u)= \begin{cases}\frac{1}{2} & u \in[-1,0) \\ \frac{4}{9} u^{2} & u \in[0, c] \\ 0 & \text { else }\end{cases}
$$

You can leave your answers to this problem in terms of c, except for part (a).
(a) Obtain the value of the constant c in order for $f_{X}(u)$ to be a valid pdf.

Solution: The pdf has to be non-negative and it has to integrate to one. It is clearly non-negative and

$$
1=\int_{\infty}^{\infty} f_{X}(u) d u=\int_{-1}^{0} \frac{1}{2} d u+\int_{0}^{c} \frac{4}{9} u^{2} d u=\frac{1}{2}+\frac{4}{27} c^{3},
$$

so that $c=\left(\frac{27}{8}\right)^{1 / 3}=\frac{3}{2}$.
(b) Determine the $\operatorname{CDF} F_{X}(u)$ for all u. You can leave your answer in terms of the constant c.
Solution: By definition, $F_{X}(u)=P\{X \leq u\}$. From the support of f_{X} we can clearly see that $F_{X}(u)=0$ if $u<-1$ and $F_{X}(u)=1$ if $u>c$.
If $u \in[-1,0)$ then

$$
F_{X}(u)=\int_{-\infty}^{u} f_{X}(v) d v=\int_{-1}^{u} \frac{1}{2} d u=\frac{u+1}{2} .
$$

If $u \in[0, c]$ then

$$
F_{X}(u)=\int_{-\infty}^{u} f_{X}(v) d v=\int_{-1}^{0} \frac{1}{2} d u+\int_{0}^{u} \frac{4}{9} u^{2} d u=\frac{1}{2}+\frac{4}{27} u^{3}
$$

So that

Solution: By definition

$$
E[X]=\int_{\infty}^{\infty} u f_{X}(u) d u=\int_{-1}^{0} u \frac{1}{2} d u+\int_{0}^{c} u \frac{4}{9} u^{2} d u=-\frac{1}{4}+\frac{c^{4}}{9} .
$$

By LOTUS

$$
E\left[X^{3}\right]=\int_{\infty}^{\infty} u^{3} f_{X}(u) d u=\int_{-1}^{0} u^{3} \frac{1}{2} d u+\int_{0}^{c} u^{3} \frac{4}{9} u^{2} d u=-\frac{1}{8}+\frac{4}{54} c^{6} .
$$

(d) Let $Y=-X^{3}$. Obtain the $\operatorname{CDF} F_{Y}(v)$ for all v.

Solution: Notice that $X \in[-1, c]$, so that $Y \in\left[-c^{3}, 1\right]$. By definition,

$$
\begin{aligned}
F_{Y}(v) & =P\{Y \leq v\}=P\left\{-X^{3} \leq v\right\}=P\{X \geq-\sqrt[3]{v}\}=1-F_{X}(-\sqrt[3]{v}) \\
& = \begin{cases}0 & v<-c^{3}, \\
1-\left(\frac{1}{2}+\frac{4}{27}(-\sqrt[3]{v})^{3}\right)=\frac{1}{2}+\frac{4}{27} v & v \in\left[-c^{3}, 0\right), \\
1-\left(\frac{-\sqrt[3]{v}+1}{2}\right)=\frac{1+\sqrt[3]{v}}{2} & v \in[0,1], \\
1 & v>1\end{cases}
\end{aligned}
$$

9. [12 points] Suppose that an urn contains g green balls and r red balls. All balls are equally likely to be taken out of the urn.
(a) Suppose that you grab a total of k balls (no balls are put back). What is the probability of grabbing x green balls?
Solution: Since the experiment is under a uniform probability distribution, we can solve this problem by counting. We want to count the number of ways to grab x green balls in a total of k balls grabbed. We first select x out of g green balls and then independently select $k-x$ out of r red balls. The number of ways to select x out of g green balls is given by $\binom{g}{x}$, and the number of ways to select select $k-x$ out of r red balls is $\binom{r}{k-x}$. So, there are $\binom{g}{x}\binom{r}{k-x}$ ways of having x green balls among the k grabbed balls. We normalize by the total number of ways to grab k balls, to get the solution:

$$
\frac{\binom{g}{x}\binom{r}{k-x}}{\binom{f+r}{k}} .
$$

(b) Now suppose that all k balls are returned to the urn, and this time you grab a total of m balls. Let A be the event that among the set of m balls, exactly 2 green balls are included that were also grabbed the first time. Find $P(A)$.
Solution: Again, we use counting to solve for the probability. We decompose the counting problem into two steps: we first select the two green balls that are grabbed both times, and then we independently select the remaining $m-2$ balls from the $g+r-x$ balls that were not green balls grabbed the first time. Therefore we have $\binom{x}{2}\binom{g+r-x}{m-2}$, giving us the probability of

$$
\frac{\binom{x}{2}\binom{g+r-x}{m-2}}{\binom{g+r}{m}} .
$$

10. [30 points] (3 points per answer)

In order to discourage guessing, 3 points will be deducted for each incorrect answer (no penalty or gain for blank answers). A net negative score will reduce your total exam score.
(a) A, B and C are three events such that $0<P(A), P(B), P(C)<1$.

TRUE	FALSE	
\square	\square	$P(A \mid B)+P\left(A^{c} \mid B\right)=1$.
\square	\square	$P(A \mid B) P(B)+P\left(A^{c} \mid B\right) P(B)=P(A)$.
\square	\square	If $P(A \mid B)=P(B \mid A)$, then $P(A)=P(B)$.

Solution: True,False,False
(b) Consider a binary hypothesis testing problem. Denote the probabilities of false alarm and missed detection for the ML decision rule by $P_{F A}^{M L}$ and $P_{M D}^{M L}$, respectively. Similarly, denote the probabilities of false alarm and missed detection for the MAP decision rule by $P_{F A}^{M A P}$ and $P_{M D}^{M A P}$, respectively.

TRUE FALSE$P_{F A}^{M L}+P_{M D}^{M L}=1$.
$P_{F A}^{M A P} \leq P_{F A}^{M L}$.$\pi_{0} P_{F A}^{M L}+\pi_{1} P_{M D}^{M L} \geq \pi_{0} P_{F A}^{M A P}+\pi_{1} P_{M D}^{M A P}$.
$\square \quad \square \quad$ If $\pi_{0}=0.5$ then $P_{M D}^{M L}=P_{M D}^{M A P}$.
Solution: False,False,True,True
(c) Suppose X and Y are jointly continuous random variables.

TRUE FALSEIf $E[Y \mid X]=3 X+1$, then $\hat{E}[Y \mid X]=3 X+1$.If $\hat{E}[Y \mid X]=3 X+1$ then $\hat{E}[X \mid Y]=\frac{1}{3} Y-\frac{1}{3}$.
$\square \quad \square$
If $\hat{E}[Y \mid X]$ is constant, then $\hat{E}[X \mid Y]$ is also constant.

Solution: True, False, True.

