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1. [18 points] Suppose under hypothesis Hy, X has pdf fi(u) = 1 — 1|u| for u € (-2,2),
but under hypothesis Hy, X is uniformly distributed between (—1,1). Let mo = ;.
(a) Obtain the MAP decision rule.

Solution: The likelihood ratio is given by A(u) = 222; If w¢ (—1,1), then

fo(u) = 0 and hence we chose H;.
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For u € (—1,1), A(u) = b 1L +|u|. The MAP rule compares the likelihood

2

ratio to the threshold ¢ = 3 = 1. We have A(u) >

3

SIS

3, which means |u| < 3.

However, % > 1 so that H; is always chosen for u € (—1,1).
Hence the MAP rule is the following: declare H; always.

(b) Obtain prase atarm for the MAP rule.
Solution: H; is always declared under the MAP rule, hence we obtain

Pfaise alarm = P{declare Hi|Hy} = 1.

(¢) Obtain ppss for the MAP rule.
Solution: H is always declared under the MAP rule, hence we obtain

Pmiss = P{declare Hy|H;} = 0.

2. [20 points| Consider a Poisson process of rate A.

(a) What is the probability that there are no arrivals in the interval [0, 2]?

Solution: Let N; be the number of arrivals in [0,¢]. Then Ny ~ Poi(2)) because
the length if the time interval is 2 time units. Hence,

e~ A (2)\)0
P(Ny, =0) = —é' ) _ e 2.

(b) What is the probability that there are two or fewer arrivals in the interval [0, 2]?
Solution:

672)\(2)\)0 N 672/\(2)\)1 N 672)\(2)\)2 _ 6_2)\

PNy < 2) = 0! 1 21

(T+2X+2X%).



(c) Given that there are two arrivals during [0, 2], what is the probability that there
is one arrival during [0, 0.5]7
Solution:
P(No,g) = 1,N2 = 2) P(N0_5 = 1, N2 — NQ'5 = 1)
P(Nos =1|Ny =2) = =
(Nos = 1INz =2) P(N, =2) P(N, =2)

670.5>\(0.5A)1 871.5)\(1_5)\)1
P(N0.5 = 1)P<N2 — N0.5 = 1) 1! 1!

P(NQZQ) M

2!
3
8 )
because Ny5 ~ Poi(0.5\) and Ny — Ny 5 ~ Poi(1.5)).
(d) Obtain the probability that the second arrival occurs before a fixed time ¢ > 0.

Solution: In order for the second arrival to occur before time ¢, there needs to be
at least 2 arrivals before time ¢. Hence,

eft)\ (t>\)0 eft)\(t)\)l
o Tl

P{Nt22}:1—P{Nt<2}:1—< >:1—e—ﬂ(1+m,

because Ny ~ Poi(tA).

3. [18 points] Consider a two stage experiment. First, roll a die, with equiprobable sides
labeled 1,2,3,4,4,5 (notice that 4 is on two sides of the die and 6 is not on the die).
Let X denote the number showing, and then flip a biased coin X times, where tails
shows % of the time. Let Y be the number of times tails shows.

(a) Obtain P{Y = 3|X = 4}.
Solution: Given that X = 4, then Y ~ Binomzial (4, %) because the coin will be
flipped 4 times and the probability of tails in each flip is %. Therefore,
Py =3xX =4} = () (D" (D) = &

(b) Obtain P{Y = 3}. Recall that 4 is on two sides of the die and 6 is not on the die.
Solution: Given that X = k, then Y ~ Binomial (k, %) because the coin will be
flipped k times and the probability of tails in each flip is %.

Using the law of total probability,
P{Y =3} = ) P{Y = 3|X = k}P{X = k} = S0, (5) (3)* (1) 7" PX =
=6 @ 50 GO0 0 =15
(c) Obtain P{X =4|Y = 3}.
Solution: Using Bayes rule and the result from part (a),
P{Y =3|X =4}P{X =4} i 16
P{Y =3} 26199

P{X =4y =3} =

4. [22 points] Let X be a geometric random variable with parameter p, and let Y be be a
geometric random variable with parameter g. Assume that X and Y are independent.
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(a) Suppose (only for this part) that p = % and that ¢ = }L. Obtain E[2X + 3Y — 1]
and Var(2X +3Y —1).
By linearity of expectation F[2X + 3Y — 1] = 2E[X] + 3E[Y] -1 = 2 ( ) +
3(%)—1:14
4

Solution: If X ~ Geometric(p), then E[X]| = % and Var(X) = %.
And from scaling of variance and independence of X and Y, Var(2X +3Y —1) =

ol =

2%mme+¥Vwﬁq:4(%%)+9<b%):1n.
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(b) Suppose (only for this part) that p = 2 and that ¢ = ;. Obtain Cov(2X,3Y).
Solution: From the scaling of covariance and independence of X and Y,

Cov(2X,3Y) =2(3)Cov(X,Y) = 0.
(c) Obtain the joint pmf px y(i,7) for all ¢ and j, and express it in terms of p and g¢.

Solution: If X ~ Geometric(p), then px (i) = (1 — p)"~'p for integer i > 1.
From the independence of X and Y,
pxy(i,7) = px()py(j) = (1 —p)"'p(1 — q)"~'q for integer 7,57 > 1.

(d) Find the conditional pmf pxy (i|j) for all 7 and j. Express it in terms of p and ¢.
Solution: From the independence of X and Y and the fact that X ~ Geometric(p),
pxy (ilj) = px (1) = (1 — p)"~'p for integer i > 1.

(e) Suppose that you don’t know p but you perform the experiment once and observe
that X2 = 16. Obtain the maximum likelihood estimate pyr.

Solution: The likelihood of observing X? = 16 is the same as the likelihood of
observing X = 4, which is px(4) = (1 — p)*~!'p. Maximizing this likelihood (say
taking derivatives) yields par, = .

5. [22 points] Let X and Y be jointly uniform random variables with joint pdf fxy (u,v)
with support in the shaded region below, where ¢ > 0 is a constant.
by

(a) Let ¢ = %. Obtain the joint pdf fyy(u,v) for all points in the 2 — d plane.
Solution: For jointly uniform random variables, the joint pdf fxy (u,v) is simply
inversely proportional to the shaded area

A [—%—(—2(2%))} (1—%>+(2_%_<_%)) (1_%):;

Therefore, fxy(u,v) =5 = % for -1 <u < % and 0 <o < min{%,u+ 1}.
8

(b) Again, let ¢ = 1. Obtain the marginal pdf fx(u) for all u.
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Solution: To obtain the marginal of X we need to integrate the joint pdf over
all values of YV: fx(u) = [ fxy(u,v)dv.

f0“+1 %dv = %(u +1) -1<u< —%
1
Frw) = fEsgo - 1 lcu<s
0 else
(¢) Again, let ¢ = 3. Obtain the conditional pdf fy|x(v|u) for all u and v.
L%
1-c
u
-2¢ <o 2¢
Solution: The conditional pdf fy|x(v|u) = f;},;((zsv) when fx(u) > 0. From parts
(a) and (5),
- 3
unglefmed u¢ [-1,2]
s -1 _1< 1 <
Frix (v]u) = %(u—i—l) utl Ifu<—-350<v<u+1
$=2 —s<u<30<v<;
9
0 else

(d) Find the value of the constant ¢ such that X and Y are independent.

Solution: A condition for independence of two random variables is that the
support of their joint pdf has to be a product set, and this condition is sufficient
for independence if the random variables are jointly uniform. Therefore, ¢ must
be such that the shaded area is a rectangle: ¢ = 0.

6. [18 points] Suppose X and Y are independent Gaussian random variables with px = 3,

py =0,0% =7and 0% =9. Let Z = X +Y. NOTE: you can leave your answers for
this problem in terms of the () function.

(a) Obtain P(X < 1).

Solution: X is a Gaussian random variable with mean 3 and variance 7, hence.
X-3 1-3 2 2
P(X<1l)=P < =P (——| = —
xen=-r(Z2<12) =2 (-F)-2(5)

(b) Obtain P(Z < 1).

Solution: Observe that Z is a Gaussian random variable with mean E[Z]
EX+Y]=FEX|+ E[Y] =340 =3 and variance Var(Z) = Var(X +Y) =
Var(X)+ Var(Y) =749 = 16 because X and Y are independent. Hence,

P(Z<1)=P (Z;?’ <1 ; 3) = ®(—0.5) = Q(0.5)




(¢) Obtain the best MMSE the linear estimator E[X|Z].
Solution: The best MMSE the linear estimator E[X|Z] is given by

X.Z
CoolX2) () tux = (2 —3) +3,

Blx|z) = Var(Z) 16

because Cov(X,Z) = Cov(X, X +Y) =Var(X)+ Cov(X,Y)=7T+0="17.

7. [18 points] A store sells two types of phones, model A and model I. An A phone
battery drains after X days, where X ~ Fxp(3). An I phone battery drains after YV
days, where Y ~ Ezp(2). The random variables X and Y are independent.

(a) Given that the battery in an A phone has not drained in the the first v days, what
is the expected time before its battery drains?

Solution: The expected time before the battery drains, given that the battery
has not drained in the the first v days, is

1 1
E[X|X>u]:E[Z+u]:)\—+u:§+u,
X

where we used the memoryless property of the exponential random variable X,
and Z ~ Exp(3).

(b) Suppose that the I phone is turned on after the A phone’s battery drains. Given
that the battery in an A phone has not drained in the the first u days, what is the
expected total time before both batteries drain?

Solution:

1 1 1 1 5
E[X+Y|X>u]ZE[X|X>U]+E[Y]=§+U+/\—:§+U+§:6+U,
Y

where we used the linearity of expectation, the memoryless property of the ex-
ponential random variable X, Z ~ Exp(3), and the fact the Y is independent of
X.

(c) What is the probability that an A phone battery drains before an I phone battery?
Solution: The probability that an A phone battery drains before an I phone
battery is given by

P{X <Y} = / / 3e732e™% du dv = / (1—e)2e ?dv=-—"=_.
o Jo 0

8. [22 points| Let ¢ be a constant and X be a random variable with pdf.

% u € [_17 O>7
fx(u) = §u2 u € |0,¢,
0 else.

You can leave your answers to this problem in terms of ¢, except for part (a).
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(a)

(d)

Obtain the value of the constant ¢ in order for fx(u) to be a valid pdf.

Solution: The pdf has to be non-negative and it has to integrate to one. It is
clearly non-negative and

> 01 €4 1 4
1: d — _d _2d — _ _3
/Oofx(u)u /_12u+/0 9u U 2+27c,

so that ¢ = (2—87)1/3 = 3.

Determine the CDF Fx(u) for all u. You can leave your answer in terms of the
constant c.

Solution: By definition, Fx(u) = P{X < w}. From the support of fx we can
clearly see that Fix(u) =0 if u < —1 and Fx(u) =1if u > c.
If w € [-1,0) then

u+1

FX(u):/_;fX(v)dv:/j%du: a3

If uw € [0, ¢] then

Fy(u) = fX(U)dU:/ §du+/0 —uldu = = + —ud.

. o 9 2 27
So that
W LT
Fx(u) = %2+ Ly 26[0707]’ T
! u>% we[~1,0),
Obtain E[X] and E[X?]. Recall that fx () = 8u2 u Sée [0, ],

Solution: By definition

E[X]:/ UfX(u)du:/ uﬁdqu/ U—UQdu:—Z—F%.
0

oo 1 9
By LOTUS
> | ¢ 44 1 4
E[XS] :/OO USfX(u)du:/_l u3§du‘|‘/0 u3§u2du: —g—i-ac(a.

Let Y = —X?®. Obtain the CDF Fy (v) for all v.
Solution: Notice that X € [—1, ], so that Y € [—¢?,1]. By definition,

Fy(v) = P{Y <v}=P{-X’<v}=P{X>—-Vv}=1-Fx(—{v)

0 v < —c,

1—(5+5(—=vv)?) =5+5v vel[=c0),
Ty () = ve 0,1,

1 v>1



9. [12 points] Suppose that an urn contains g green balls and r red balls. All balls are
equally likely to be taken out of the urn.

(a) Suppose that you grab a total of k£ balls (no balls are put back). What is the
probability of grabbing x green balls?
Solution: Since the experiment is under a uniform probability distribution, we
can solve this problem by counting. We want to count the number of ways to grab
x green balls in a total of k£ balls grabbed. We first select x out of g green balls
and then independently select kK — x out of r red balls. The number of ways to
select x out of g green balls is given by (g ), and the number of ways to select select
k — x out of r red balls is (kix) So, there are (g) (kix) ways of having = green
balls among the & grabbed balls. We normalize by the total number of ways to
grab k balls, to get the solution:

0()

("x")

(b) Now suppose that all k£ balls are returned to the urn, and this time you grab a

total of m balls. Let A be the event that among the set of m balls, exactly 2 green
balls are included that were also grabbed the first time. Find P(A).
Solution: Again, we use counting to solve for the probability. We decompose
the counting problem into two steps: we first select the two green balls that are
grabbed both times, and then we independently select the remaining m — 2 balls
from the g +r — x balls that were not green balls grabbed the first time. Therefore
we have (m) (9”71), giving us the probability of

Cs)

()

10. [30 points] (3 points per answer)
In order to discourage guessing, 3 points will be deducted for each incorrect answer (no
penalty or gain for blank answers). A net negative score will reduce your total exam
score.

(a) A, B and C are three events such that 0 < P(A), P(B), P(C) < 1.

TRUE FALSE
0 O  P(A|B) + P(A%|B) = 1.
0 O  P(A|B)P(B)+ P(A°|B)P(B) = P(A).
O O If P(A|B) = P(B|A), then P(A) = P(B).

Solution: True,False,False



(b) Consider a binary hypothesis testing problem. Denote the probabilities of false
alarm and missed detection for the ML decision rule by PML and PML, respec-
tively. Similarly, denote the probabilities of false alarm and missed detection for
the MAP decision rule by PMAP and P4 respectively.

TRUE FALSE
U U PML + PML — 1.
0 O pMAP < pML
0 U moPML + m PME > mg PMAY + 7 PMAP,
O O If 7o = 0.5 then P}ML = PMAE.

Solution: False False, True, True

(c) Suppose X and Y are jointly continuous random variables.

TRUE FALSE
O O  If E[Y|X] =3X +1, then E[Y|X] =3X + 1.
O O If B[Y|X] =3X +1 then F[X|Y] =1y - L.
O O If E[Y|X] is constant, then E[X|Y] is also constant.

Solution: True, False, True.



