ECE 313: Exam II

Thursday, July 23, 2015 4:00 p.m. — 5:15 p.m. 1013 ECEB

Name: (in BLOCK CAPITALS)

NetID:	
Signature:	
Instructions	
This exam is closed book and closed notes except that both sides may be used. No electronic equipment (cell p	
The exam consists of six problems worth a total of 100 equally, so it is best for you to pace yourself accordingly. and reduce common fractions to lowest terms, but DO N example, write $\frac{3}{4}$ instead of $\frac{24}{32}$ or 0.75). SHOW YOUR WORK; BOX YOUR ANSWERS. Answers w very little credit. If you need extra space, use the back around each of your final numerical answers.	Write your answers in the spaces provided, OT convert them to decimal fractions (for ithout appropriate justification will receive
	Grading
	1. 22 points
	2. 14 points
	3. 25 points
	4. 14 points
	5. 25 points
	Total (100 points)

1. [22 points] Let X have the probability density function (pdf) $f_X(u)$ plotted below.

(a) Obtain the constant c for $f_X(u)$ to be a valid pdf.

(b) Obtain the cumulative distribution function (CDF) of X, $F_X(u)$ for all u.

(c) Let Y = |X|, obtain the cumulative distribution function (CDF) of Y, $F_Y(v)$ for all v.

- 2. [14 points] Let $X \sim Uniform\left(0, \frac{1}{a}\right)$, that is, X has a uniform distribution on $\left(0, \frac{1}{a}\right)$.
 - (a) If a is unknown, but it is observed that $X = \frac{1}{4}$, obtain the maximum likelihood estimate \hat{a}_{ML} of a.

(b) If Y = 2X + 1 and it is known that Var(Y) = 12, obtain a.

- 3. [25 points] Bikes arrive at a certain intersection according to a Poisson process with arrival rate $\lambda = 2$ bikes/hour. Let N_t denote the number of bikes that arrive up until time t. Obtain:
 - (a) $P\{\text{it takes more than 2 hours after the first bike arrives until the second bike arrives}\}.$

(b) $P\{N_3 - N_{1.5} = 2\}.$

(c) $P{N_3 = 8 | N_1 = 3}$.

(d) Suppose λ is unknown but it is known that $P\{N_1 = 3|N_3 = 8\} = {8 \choose 3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^5$, obtain the possible values of λ .

- 4. [14 points] Let $X \sim N(\mu, \sigma^2)$, that is, X is a Gaussian random variable with mean μ and variance σ^2 . It is known that $P\{X > 2\} = 0.5$ and that $P\{X < 0.14\} = 0.2676$.
 - (a) Obtain μ and σ^2 .

(b) Find constants a and b such that Y=aX+b is a Gaussian random variable with mean 1 and variance $\frac{1}{4}$, that is, for $Y\sim N\left(1,\frac{1}{4}\right)$.

5. [25 points] Let X and Y be jointly continuous random variables with joint probability density function (pdf) $f_{X,Y}(u,v) = \frac{1}{2}$ in the area plotted below, and zero else. Obtain:

- (a) The constant a for $f_{X,Y}(u,v)$ to be a valid joint pdf.
- (b) The marginal probability density function (pdf) of X, $f_X(u)$ for all u.

(c) E[X].

(d) The conditional pdf of Y given X, $f_{Y|X}(v|u)$ for all u, v.