ECE 313: Hour Exam I

Wednesday, February 27, 2019 8:45 p.m. — 10:00 p.m.

- 1. [6+14 points] An experiment consists of observing the content of an 8-bit register. We assume that all 256 byte values are equally likely to be observed.
 - (a) Let A denote the event that the least significant bit (LSB) is a ZERO. What is P(A)? Solution: Since the LSB = ZERO, that leaves the top seven bits free to take one of either ONE or ZERO values. There are 2^7 such bytes. Therefore, the $P(A) = \frac{2^7}{2^8} = \frac{1}{2}$.
 - (b) Let B denote the event that the register contains 5 ONEs and 3 ZEROes. What is P(B|A)?

Solution: $P(B|A) = \frac{P(AB)}{P(A)}$. To calculate P(AB) note that event AB is the set of outcomes in which the memory word has exactly 3 ZEROes with one ZERO in the LSB. Thus, the 7 non-LSB bits have exactly 5 ONEs and 2 ZEROs. Therefore, $|AB| = \frac{7!}{5! \times 2!} = 21$ and therefore $P(AB) = \frac{21}{256}$ and $P(B|A) = \frac{21}{128}$.

- 2. [10+6+8 points] A 3-faced die is rolled twice. $\omega_1 \in \{1, 2, 3\}$ and $\omega_2 \in \{1, 2, 3\}$ are the outcomes of each roll. The random variable X takes values in the set $\{2\omega_1 + \omega_2\}$.
 - (a) Determine the set of values u_i that X can take and the probability mass function $P_X(u_i)$. Solution: The sample space

$$\Omega = \{(\omega_1, \omega_2\} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

and $\{2\omega_1 + \omega_2\} = \{3, 4, 5, 5, 6, 7, 7, 8, 9\}$ Therefore, $P_X(3) = \frac{1}{9}$, $P_X(4) = \frac{1}{9}$, $P_X(5) = \frac{2}{9}$, $P_X(6) = \frac{1}{9}$, $P_X(7) = \frac{2}{9}$, $P_X(8) = \frac{1}{9}$, $P_X(9) = \frac{1}{9}$.

- (b) Calculate E[X].
 Solution: E[X] = (3 + 4 + 6 + 8 + 9) × ¹/₉ + (5 + 7) × ²/₉ = ¹⁸/₃.
 (c) Calculate E[¹/_{2X}].
- Solution: $E[\frac{1}{2X}] = \frac{1}{2}E[\frac{1}{X}]$. Using LOTUS, $E[\frac{1}{X}] = (\frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9}) \times \frac{1}{9} + (\frac{1}{5} + \frac{1}{7}) \times \frac{2}{9}$.
- 3. [8+8+6 points] Bob plays a lottery game. He spends \$2 each week to purchase a lottery ticket for this game. Suppose the probability of winning a \$4 prize on each ticket is 1/30, and the probability of winning the Jackpot (the grand prize) on each ticket is 1/300,000,000.
 - (a) Bob will purchase a total of 52 tickets in the year 2019 (=52 weeks). What is the expected number of times that Bob wins a \$4 prize this year? Present your answer in an irreducible fraction.

Solution: Let X denote the number of times that Bob wins a \$4 prize with 52 tickets. X follows a binomial distribution with parameters n = 52 and p = 1/30.

$$E[X] = np = 52 \times \frac{1}{30} = \frac{26}{15}$$

(b) Bob has purchased 8 tickets since Jan 1, 2019. What is the probability that Bob has won the \$4 prize twice since Jan 1, 2019? Write down the expression for your answer without calculating the final numerical value.

Solution: Let Y denote the number of times that Bob wins a \$4 prize with 8 tickets. Y follows a binomial distribution with parameters n = 8 and p = 1/30. $P\{Y = 2\} = {8 \choose 2} (\frac{1}{30})^2 (\frac{29}{30})^6$

- (c) Find the expected number of tickets needed until a Jackpot is won by Bob (suppose he could play the game forever).
 Solution: Let Z denote the number of tickets needed until Bob wins a Jackpot. Z follows a geometric distribution with parameter p = 1/300,000,000.
 E[Z] = 1/p = 300,000,000.
- 4. [8+8 points] Suppose a random variable X is uniformly distributed on $\{2, 4, 6, 8, 10, \dots, 2n\}$.
 - (a) We observe X = 10. Find the ML estimate of n. Solution: Since X has a uniform distribution, $P(X = 10) = \frac{1}{n}$, where $2n \ge 10$. To maximize P(X = 10), we have n = 5.
 - (b) Suppose we make two independent observations of X. Denote the observations by X_1 and X_2 . We have $X_1 = 20$ and $X_2 = 16$. Find the ML estimate of n. **Solution:** Since X has a uniform distribution, $P(X_1 = 20, X_2 = 16) = (\frac{1}{n})^2$, where $2n \ge 20$. To maximize $P(X_1 = 20, X_2 = 16)$, we have n = 10.
- 5. [12+6 points] Suppose Z_1 , Z_2 , Z_3 are i.i.d. Bernoulli random variables with parameter $p = \frac{1}{2}$. The random variable $S = Z_2 Z_3$ if $Z_1 = 1$, and $S = Z_2 + Z_3$ if $Z_1 = 0$.
 - (a) Find P(S = 1). Solution:

$$P(S = 1) = P(Z_1 = 1, Z_2 = 1, Z_3 = 1) + P(Z_1 = 0, Z_2 = 1, Z_3 = 0) + P(Z_1 = 0, Z_2 = 0, Z_3 = 1) = \frac{3}{8}.$$

(b) Find $P(Z_1 = 1 | S = 1)$. Solution:

$$P(Z_1 = 1 | S = 1) = \frac{P(Z_1 = 1, Z_2 = 1, Z_3 = 1)}{P(S = 1)} = \frac{\frac{1}{8}}{\frac{3}{8}} = \frac{1}{3}.$$