ECE 313: Hour Exam I

Wednesday, February 27, 2019
8:45 p.m. - 10:00 p.m.

1. [$\mathbf{6}+\mathbf{1 4}$ points] An experiment consists of observing the content of an 8-bit register. We assume that all 256 byte values are equally likely to be observed.
(a) Let A denote the event that the least significant bit (LSB) is a ZERO. What is $P(A)$? Solution: Since the LSB $=$ ZERO, that leaves the top seven bits free to take one of either ONE or ZERO values. There are 2^{7} such bytes. Therefore, the $P(A)=\frac{2^{7}}{2^{8}}=\frac{1}{2}$.
(b) Let B denote the event that the register contains 5 ONEs and 3 ZEROes. What is $P(B \mid A)$?
Solution: $P(B \mid A)=\frac{P(A B)}{P(A)}$. To calculate $P(A B)$ note that event $A B$ is the set of outcomes in which the memory word has exactly 3 ZEROes with one ZERO in the LSB. Thus, the 7 non-LSB bits have exactly 5 ONEs and 2 ZEROs. Therefore, $|A B|=\frac{7!}{5!\times 2!}=$ 21 and therefore $P(A B)=\frac{21}{256}$ and $P(B \mid A)=\frac{21}{128}$.
2. $\left[\mathbf{1 0}+\mathbf{6}+\mathbf{8}\right.$ points] A 3 -faced die is rolled twice. $\omega_{1} \in\{1,2,3\}$ and $\omega_{2} \in\{1,2,3\}$ are the outcomes of each roll. The random variable X takes values in the set $\left\{2 \omega_{1}+\omega_{2}\right\}$.
(a) Determine the set of values u_{i} that X can take and the probability mass function $P_{X}\left(u_{i}\right)$.

Solution: The sample space

$$
\Omega=\left\{\left(\omega_{1}, \omega_{2}\right\}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}\right.
$$

and $\left\{2 \omega_{1}+\omega_{2}\right\}=\{3,4,5,5,6,7,7,8,9\}$ Therefore, $P_{X}(3)=\frac{1}{9}, P_{X}(4)=\frac{1}{9}, P_{X}(5)=\frac{2}{9}$, $P_{X}(6)=\frac{1}{9}, P_{X}(7)=\frac{2}{9}, P_{X}(8)=\frac{1}{9}, P_{X}(9)=\frac{1}{9}$.
(b) Calculate $E[X]$.

Solution: $E[X]=(3+4+6+8+9) \times \frac{1}{9}+(5+7) \times \frac{2}{9}=\frac{18}{3}$.
(c) Calculate $E\left[\frac{1}{2 X}\right]$.

Solution: $E\left[\frac{1}{2 X}\right]=\frac{1}{2} E\left[\frac{1}{X}\right]$. Using LOTUS, $E\left[\frac{1}{X}\right]=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}\right) \times \frac{1}{9}+\left(\frac{1}{5}+\frac{1}{7}\right) \times \frac{2}{9}$.
3. $[8+8+6$ points] Bob plays a lottery game. He spends $\$ 2$ each week to purchase a lottery ticket for this game. Suppose the probability of winning a $\$ 4$ prize on each ticket is $1 / 30$, and the probability of winning the Jackpot (the grand prize) on each ticket is $1 / 300,000,000$.
(a) Bob will purchase a total of 52 tickets in the year 2019 (=52 weeks). What is the expected number of times that Bob wins a $\$ 4$ prize this year? Present your answer in an irreducible fraction.
Solution: Let X denote the number of times that Bob wins a $\$ 4$ prize with 52 tickets. X follows a binomial distribution with parameters $n=52$ and $p=1 / 30$.
$E[X]=n p=52 \times \frac{1}{30}=\frac{26}{15}$
(b) Bob has purchased 8 tickets since Jan 1, 2019. What is the probability that Bob has won the $\$ 4$ prize twice since Jan 1, 2019? Write down the expression for your answer without calculating the final numerical value.
Solution: Let Y denote the number of times that Bob wins a $\$ 4$ prize with 8 tickets. Y follows a binomial distribution with parameters $n=8$ and $p=1 / 30$.
$P\{Y=2\}=\binom{8}{2}\left(\frac{1}{30}\right)^{2}\left(\frac{29}{30}\right)^{6}$
(c) Find the expected number of tickets needed until a Jackpot is won by Bob (suppose he could play the game forever).
Solution: Let Z denote the number of tickets needed until Bob wins a Jackpot. Z follows a geometric distribution with parameter $p=1 / 300,000,000$.
$E[Z]=1 / p=300,000,000$.
4. $[8+8$ points] Suppose a random variable X is uniformly distributed on $\{2,4,6,8,10, \ldots, 2 n\}$.
(a) We observe $X=10$. Find the ML estimate of n.

Solution: Since X has a uniform distribution, $P(X=10)=\frac{1}{n}$, where $2 n \geq 10$. To maximize $P(X=10)$, we have $n=5$.
(b) Suppose we make two independent observations of X. Denote the observations by X_{1} and X_{2}. We have $X_{1}=20$ and $X_{2}=16$. Find the ML estimate of n.
Solution: Since X has a uniform distribution, $P\left(X_{1}=20, X_{2}=16\right)=\left(\frac{1}{n}\right)^{2}$, where $2 n \geq 20$. To maximize $P\left(X_{1}=20, X_{2}=16\right)$, we have $n=10$.
5. $\left[\mathbf{1 2 + 6}\right.$ points] Suppose Z_{1}, Z_{2}, Z_{3} are i.i.d. Bernoulli random variables with parameter $p=\frac{1}{2}$. The random variable $S=Z_{2} Z_{3}$ if $Z_{1}=1$, and $S=Z_{2}+Z_{3}$ if $Z_{1}=0$.
(a) Find $P(S=1)$.

Solution:

$$
\begin{aligned}
P(S=1)= & P\left(Z_{1}=1, Z_{2}=1, Z_{3}=1\right)+P\left(Z_{1}=0, Z_{2}=1, Z_{3}=0\right) \\
& +P\left(Z_{1}=0, Z_{2}=0, Z_{3}=1\right)=\frac{3}{8} .
\end{aligned}
$$

(b) Find $P\left(Z_{1}=1 \mid S=1\right)$.

Solution:

$$
P\left(Z_{1}=1 \mid S=1\right)=\frac{P\left(Z_{1}=1, Z_{2}=1, Z_{3}=1\right)}{P(S=1)}=\frac{\frac{1}{8}}{\frac{3}{8}}=\frac{1}{3} .
$$

