1. **[Probability Density]**
 Random variable X has the following PDF:
 \[
 f_X(u) = \begin{cases}
 \frac{1}{5} & 0 < u \leq 1 \\
 \frac{1}{2} & 1 < u \leq 2 \\
 \frac{1}{10} & 2 < u \leq 5 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 Answer each of the following questions by shading and labeling the area of a region on a graph. **Do not** perform any integrals.

 (a) What is $P(2 < X \leq 3)$? **Solution:** $1/10$. The plot should show shading between $u = 2$ and $u = 3$.

 (b) What is $P(-1 \leq X \leq 1.5)$? **Solution:** $9/20$

 (c) What is $P(2 \leq X \leq 6)$? **Solution:** $3/10$

 (d) What is $P(1.173 \leq X \leq 1.174)$? **Solution:** 0.0005. The graph should show a shaded rectangle of width 0.001 and height 0.5.

 (e) What is $F_X(v)$? **Solution:**
 \[
 F_X(v) = \begin{cases}
 0 & v \leq 0 \\
 \frac{v}{2} & 0 \leq v \leq 1 \\
 \frac{v}{5} + \frac{v-1}{10} & 1 \leq v \leq 2 \\
 \frac{v}{10} + \frac{v-2}{10} & 2 \leq v \leq 5 \\
 1 & 5 \leq v
 \end{cases}
 \]

2. **[Black Swans]**
 A recent census conducted in the country of Metasylvania found that the body weight of adult Metasylvanians, measured in pounds, is a random variable X with the following probability density function:
 \[
 f_X(u) = \begin{cases}
 Ae^{-0.02(u-80)} & 80 \leq u \\
 0 & \text{else}
 \end{cases}
 \]

 The same survey found that the personal wealth of adult Metasylvanians, measured in Metasylvanian dollars, is a random variable Y with the following probability density function:
 \[
 f_Y(u) = \begin{cases}
 B \left(\frac{u}{100}\right)^{-1.5} & 100 \leq u \\
 0 & \text{else}
 \end{cases}
 \]

 (a) Find the constants A and B. **Solution:** The PDFs must integrate to 1, therefore $A = 0.02$, $B = 0.5$.

 (b) Notice that all Metasylvanians weigh at least 80 pounds.
i. What is the probability that an individual Metasylvanian weighs at least 160 pounds? **Solution:**

\[\int_{160}^{\infty} 0.02e^{-0.02(u-80)}du = e^{-80/50} \approx 0.2 \]

ii. What is the probability that an individual Metasylvanian weighs at least 800 pounds? **Solution:**

\[\int_{800}^{\infty} 0.02e^{-0.02(u-80)}du = e^{-720/50} \approx 5.6 \times 10^{-7} \]

iii. What is the expected weight of a Metasylvanian? **Solution:**

\[Z = X - 80 \] is an exponential random variable with expectation of 50, therefore \(E[X] = 80 + 50 = 130 \) pounds.

(c) Notice that every Metasylvanian has a personal wealth of at least $100.

i. What is the probability that a Metasylvanian has a personal wealth of greater than $200? **Solution:**

\[\int_{200}^{\infty} 0.5 \left(\frac{u}{100} \right)^{-1.5}du = \left(\frac{200}{100} \right)^{-0.5} \approx 0.7 \]

ii. What is the probability that a Metasylvanian has a personal wealth of greater than $1000? **Solution:**

\[\int_{1000}^{\infty} 0.5 \left(\frac{u}{100} \right)^{-1.5}du = \left(\frac{1000}{100} \right)^{-0.5} = 0.1 \]

iii. What is the probability that a Metasylvanian has a personal wealth of greater than $100,000,000? **Solution:**

\[\int_{100,000,000}^{\infty} 0.5 \left(\frac{u}{100} \right)^{-1.5}du = \left(\frac{100,000,000}{100} \right)^{-0.5} = 0.001 \]

iv. Prove that the expected personal wealth of a Metasylvanian is infinite. **Solution:**

\[E[Y] = \frac{1}{2} \int_{100}^{\infty} u \left(\frac{u}{100} \right)^{-1.5}du = \frac{1}{2000} \int_{100}^{\infty} u^{-0.5}du \to \infty \]

In the real world, an “infinite expected value” usually means that the average value depends on your sample size. If you sample 100 people, you will find a relatively small average wealth; on the other hand, if you sample one million people, you will find one or two people with astoundingly large personal wealth, and the impact of those individuals will raise the computed average.

v. **Optional:** why is extreme wealth so much more common than extreme obesity? **Solution:**

Optional: Many different hypotheses have been proposed. A popular recent hypothesis (expounded, for example, by Nassim Nicholas Taleb in *The Black Swan*) is that the rich get richer. The rate at which one amasses body weight depends on diet, exercise, etc. — these things are related to one’s current body weight, but only indirectly. By contrast, the rate at which one amasses new wealth may be directly proportional to one’s current wealth.

3. **[Expectation]**

(a)

\[f_Y(u) = \begin{cases} 1 - |u| & -1 \leq u \leq 1 \\ 0 & \text{else} \end{cases} \]

Find \(E[Y] \), \(E[|Y|] \), \(E[Y^2] \), and \(\sigma_Y^2 \). **Solution:** \(E[Y] = 0 \). \(E[|Y|] = 1/3 \). \(E[Y^2] = \sigma_Y^2 = 1/3 \).

(b) Random variable \(Z \) is the absolute value of random variable \(Y \) \((Z = |Y|) \).

i. Find \(F_Z(v) \), the CDF of random variable \(Z \). **Solution:**

\[F_Z(v) = P(Z \leq v) = P(|Y| \leq v) = \int_{-v}^{v} (1 - |u|)du \]
4. [Using LOTUS]

Let X be a continuous random variable that is uniformly distributed on $[-1, +1]$.

(a) Let $Y = X^2$. Calculate the mean and the variance of Y.

Solution: $E[Y] = E[X^2] = \int_{-1}^{1} u^2 \left(\frac{1}{2} \right) \, du = \frac{1}{3}$. $E[Y^2] = E[X^4] = \int_{-1}^{1} u^4 \left(\frac{1}{2} \right) \, du = \frac{1}{5}$.

Hence, $\text{var}(Y) = E[Y^2] - (E[Y])^2 = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}$.

(b) Let $Z = g(X)$ where $g(u) = \begin{cases} u^2, & u \geq 0, \\ -u^2, & u < 0. \end{cases}$ Find $E[Z]$.

Solution: $E[Z] = E[g(X)] = \int_{-1}^{0} -u^2 \left(\frac{1}{2} \right) \, du + \int_{0}^{1} u^2 \left(\frac{1}{2} \right) \, du = -\frac{1}{6} + \frac{1}{6} = 0$.

Even more simply, $g(u)$ is an odd function of u while $f_X(u)$ is an an even function of u so that their product is an odd function and must integrate to 0 over $[-1, 1]$.

5. [Two-Sided Exponential PDF]

Suppose X has the following PDF:

$$f_X(u) = \begin{cases} 0.1e^{u/4} & -\infty < u \leq 0 \\ 0.1e^{-u/6} & 0 \leq u < \infty \end{cases}$$

Find $E[X]$, $E[X^2]$, and σ_X^2. Solution:

$$E[X] = \int_{-\infty}^{\infty} uf_X(u) \, du = \frac{1}{10} \left(\int_{0}^{\infty} u e^{-u/4} \, du + \int_{1}^{\infty} u e^{-u/6} \, du \right)$$

For any λ, we know that

$$\int_{0}^{\infty} e^{-\lambda u} \, du = -\frac{1}{\lambda} \left. u e^{-\lambda u} \right|_{0}^{\infty} + \frac{1}{\lambda^2} \int_{0}^{\infty} e^{-\lambda u} \, du$$

$$= 0 + \frac{1}{-\lambda^2} e^{-\lambda u} \bigg|_{0}^{\infty}$$

$$= \frac{1}{\lambda^2}$$

Therefore

$$E[X] = \frac{1}{10} \left(4^2 + 6^2 \right) = 5.2$$

Similarly,

$$E[X^2] = \int_{-\infty}^{\infty} u^2 f_X(u) \, du = \frac{1}{3} \left(\int_{0}^{\infty} u^2 e^{-u/4} \, du + \int_{1}^{\infty} u^2 e^{-u/6} \, du \right)$$
For any λ, we know that
\[
\int_0^\infty u^2 e^{-\lambda u} du = - \frac{1}{\lambda} u^2 e^{-\lambda u}\bigg|_0^\infty + \frac{2}{\lambda} \int_0^\infty u e^{-\lambda u} du
\]
\[
= 0 + \frac{2}{\lambda^2} E[X]
\]
\[
= \frac{2}{\lambda^3}
\]
Therefore
\[
E[X^2] = \frac{2}{10} (4^3 + 6^3) = 56
\]

Given $E[X]$ and $E[X^2]$, we can find σ^2_X as
\[
\sigma^2_X = E[X^2] - (E[X])^2 = 56 - 27.04 = 8.96
\]

6. [Gamma PDF]

Buses arrive at the corner of Sixth and Green at an average rate of λ buses per second. Arrivals form a Poisson process. Let X be the number of buses that arrive in t seconds; X is distributed as
\[
p_X(u) = \begin{cases}
 e^{-\lambda t} \frac{(\lambda t)^u}{u!} & 0 \leq u \\
 0 & \text{else}
\end{cases}
\]

Let Y be the amount of time that you must wait for the 3rd bus to arrive. Notice that the event $\{X < 3\}$ (fewer than three buses arrive in t seconds) is exactly equivalent to the event $\{Y > t\}$ (the waiting time for the third bus is greater than t seconds).

(a) Express $1 - F_Y(t)$, the complementary CDF of variable Y, in terms of $p_X(u)$. **Solution:** $1 - F_Y(t) = \sum_{u=0}^{2} e^{-\lambda t} \frac{(\lambda t)^u}{u!}$

(b) Differentiate your answer to part (a) with respect to t in order to find the PDF of variable Y. Demonstrate that your result is equal to a Gamma PDF. **Solution:**
\[
f_Y(t) = -\frac{d}{dt} (1 - F_Y(t)) = \sum_{u=1}^{2} \frac{\lambda (\lambda t)^{u-1}}{(u-1)!} e^{-\lambda t} - \sum_{u=0}^{2} \frac{\lambda (\lambda t)^u}{u!} e^{-\lambda t}
\]
\[
f_Y(t) = \frac{\lambda (\lambda t)^2}{2!} e^{-\lambda t}
\]
This is a gamma PDF, because $\Gamma(3) = 2!$

(c) The k^{th} arrival time in a Poisson process is the sum of k independent first-order arrival times. Take advantage of this fact to find $E[Y]$ and σ^2_Y. **Solution:** $E[Y] = k/\lambda$, $\sigma^2_Y = k/\lambda^2$.

7. [Poisson Bus Lines]

Buses arrive at Sixth and Green form a Poisson process, with an average arrival rate of λ buses per minute. Buses arriving after 5:00PM always arrive in the following order: the Turquoise line (#16) always comes first, followed by the Fuchsia line (#102), followed by the Octarine (#42), followed by buses of other colors. Your bus is the Octarine. Unfortunately, there is only one Octarine bus per day; if you miss it, you will have to walk home!

(a) You arrive at the bus stop at exactly 5:00.
i. What is the probability that you will wait between t and $t + dt$ minutes for your bus, assuming that dt is very small? **Solution:** Third-order waiting time is a gamma random variable,

$$P(t < Y_3 \leq t + dt) \approx f_{Y_3}(t)dt = \begin{cases} e^{-\lambda t} \frac{\lambda^2 t^2}{2} dt & 0 \leq t \\ 0 & \text{else} \end{cases}$$

ii. What is your expected waiting time? **Solution:**

$$E[Y_3] = \frac{3}{\lambda}$$

iii. What is the variance of your waiting time? **Solution:**

$$\text{Var}(Y_3) = \frac{3}{\lambda^2}$$

(b) Your 4:00 lecturer (being half elvish) has a poor grasp of time, therefore you reach the bus stop at 5:05PM. What is the probability that your bus arrives between τ and $\tau + dt$ minutes after you? Note that τ may be negative. **Solution:** The waiting time in this part is five minutes less than the waiting time in the previous part, i.e., $Z = Y - 5$, therefore

$$P(\tau < Z \leq \tau + dt) = P(\tau + 5 < Y_3 \leq \tau + 5 + dt) \approx \begin{cases} e^{-\lambda(\tau+5)} \frac{\lambda(\tau+5)^2}{2} dt & -5 \leq \tau \\ 0 & \text{else} \end{cases}$$

(c) Fortunately, your friend Joe has been at the bus stop since 5:00. He says you haven’t missed your bus; the Turquoise bus came at 5:03, but the Fuchsia and Octarine buses have not arrived yet. Assuming that Joe is reliable, what is the probability that you will wait between τ and $\tau + dt$ minutes for your bus? **Solution:** Since the Turquoise bus has come and gone, you only have to wait for two buses to arrive. The waiting time for the second arrival in a Poisson process is a second-order gamma:

$$P(\tau < Y_2 \leq \tau + dt) \approx f_{Y_2}(\tau)dt = \begin{cases} e^{-\lambda \tau} \lambda^2 \tau dt & 0 \leq \tau \\ 0 & \text{else} \end{cases}$$

The fact that the Turquoise bus arrived at 5:03 is irrelevant; the only thing that matters is that it has already arrived.

(d) Aja has also been at the bus stop since 5:00, but she disagrees with Joe. She believes that both the Turquoise and Fuchsia buses have come and gone, but that the Octarine bus has not yet arrived. Based on your knowledge of their honesty, reliability, and observational skills, you suppose that Aja is correct with probability 0.75, and Joe is correct with probability 0.25.

i. What is the probability that you will wait between τ and $\tau + dt$ minutes for your bus to arrive? **Solution:** With probability 0.25, you must wait for two buses to arrive; with probability 0.75, you only need to wait for one bus to arrive. The probability density function for your waiting time is therefore

$$f_X(\tau) = 0.25f_{Y_2}(\tau) + 0.75f_{Y_1}(\tau)$$

$$P(\tau < X \leq \tau + dt) \approx f_X(\tau)dt = \begin{cases} \lambda e^{-\lambda \tau} (0.25\lambda \tau + 0.75) dt & 0 \leq \tau \\ 0 & \text{else} \end{cases}$$

ii. What is your expected waiting time? **Solution:**

$$E[X] = 0.25E[Y_2] + 0.75E[Y_1] = 0.25 \frac{2}{\lambda} + 0.75 \frac{1}{\lambda} = \frac{1.25}{\lambda}$$
iii. What is the variance of your waiting time? **Solution:** Let R be the number of buses for which you must wait. With probability $p_R(1) = 0.75$, Aja is correct, and you only need to wait for one bus; with probability $p_R(2) = 0.25$, Joe is right, and you need to wait for two buses. Then:

$$E[X^2] = 0.75E[X^2|R = 1] + 0.25E[X^2|R = 2] = 0.75 \left(\frac{2}{\lambda^2} \right) + 0.25 \left(\frac{6}{\lambda^2} \right) = \frac{3}{\lambda^2}$$

$$\text{Var}(X) = E[X^2] - (E[X])^2 = \frac{3}{\lambda^2} - \frac{25/16}{\lambda^2} = \frac{23/16}{\lambda^2}$$