ECE 313: Problem Set 13 Functions of Random Variables, Conditional Densities, Correlation and Covariance, Minimum-Mean-Square-Error Estimation

This Problem Set contains five problems

Due:	Wednesday April 30 at the beginning of class.
Reading:	Ross, Chapter 7, Sections 1-5, Chapter 8, Sections 1-4
Noncredit exercises:	Ross Chapter 7: Problems 1, 16, 26, 30 33, 34, 38;
	Theoretical Exercises: 1, 2, 17, 22, 23, 40
	Chapter 8: problems 1-9, 15.

1. (Unbelievable but true: this problem is much easier than it looks ...).
(a) If $\mathcal{X} \sim \operatorname{Gaussian}\left(0, \sigma^{2}\right)$, use the magic formula in Example 7b, Chapter 5.7 of Ross to show that $\mathcal{X}^{2} \sim \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2 \sigma^{2}}\right)$.
(b) Now, suppose that \mathcal{X}, \mathcal{Y}, and \mathcal{Z} are independent Gaussian $\left(0, \sigma^{2}\right)$ random variables. Then $\mathcal{X}^{2}, \mathcal{Y}^{2}$, and \mathcal{Z}^{2} are independent Gamma $\left(\frac{1}{2}, \frac{1}{2 \sigma^{2}}\right)$ random variables. Use the comment that immediately follows the proof of Proposition 3.1 of Ross (p.281) to state what is the type of pdf of $\mathcal{W}=\mathcal{X}^{2}+\mathcal{Y}^{2}+\mathcal{Z}^{2}$, and write down explicitly the exact function $f_{\mathcal{W}}(\alpha)$. What is the numerical value of $f_{\mathcal{W}}(5)$ if $\sigma^{2}=4$?
(c) Prove that $\mathrm{E}[\mathcal{W}]=3 \sigma^{2}$. If you actually evaluated an integral to get this answer instead of using LOTUS, shame on you!
(d) In a physical application, \mathcal{X}, \mathcal{Y}, and \mathcal{Z} represent the velocity (measured along three perpendicular axes) of a gas molecule of mass m. Thus, $\mathcal{H}=\frac{1}{2} m \mathcal{W}$ is the kinetic energy of the particle. It is an axiom of statistical mechanics that the average kinetic energy is $\mathrm{E}[\mathcal{H}]=\mathrm{E}\left[\frac{1}{2} m \mathcal{W}\right]=\frac{1}{2} m \mathrm{E}[\mathcal{W}]=\frac{3}{2} m \sigma^{2}=\frac{3}{2} k T$ where k is Boltzmann's constant and T is the absolute temperature of the gas in ${ }^{\circ} \mathrm{K}$. (Note that the average energy is $\frac{1}{2} k T$ per dimension.) Show that the kinetic energy \mathcal{H} has the Maxwell-Boltzmann pdf:
$f_{\mathcal{H}}(\beta)=\frac{2}{\sqrt{\pi}}(k T)^{-\frac{3}{2}} \sqrt{\beta} \exp \left(-\frac{\beta}{k T}\right)$ for $\beta \geq 0$.
(e) $\mathcal{V}=\sqrt{\mathcal{W}}=\sqrt{\mathcal{X}^{2}+\mathcal{Y}^{2}+\mathcal{Z}^{2}}$ is the speed of the molecule. Show that the pdf of \mathcal{V} is $f_{\mathcal{V}}(\gamma)=\frac{4}{\sqrt{\pi}}\left(\frac{m}{2 k T}\right)^{\frac{3}{2}} \gamma^{2} \exp \left(-\frac{m \gamma^{2}}{2 k T}\right)$, for $\gamma \geq 0$. cf. Theoretical Exercise 1 of Chapter 5.
(f) What is the average speed of the molecule?
2. Let $\mathrm{E}[\mathcal{X}]=1, \mathrm{E}[\mathcal{Y}]=4, \operatorname{var}(\mathcal{X})=4, \operatorname{var}(\mathcal{Y})=9$, and $\rho_{\mathcal{X}, \mathcal{Y}}=0.1$.
(a) If $\mathcal{Z}=2(\mathcal{X}+\mathcal{Y})(\mathcal{X}-\mathcal{Y})$, what is $\mathrm{E}[\mathcal{Z}]$?
(b) If $\mathcal{T}=2 \mathcal{X}+\mathcal{Y}$ and $\mathcal{U}=2 \mathcal{X}-\mathcal{Y}$, what is $\operatorname{cov}(\mathcal{T}, \mathcal{U})$?
(c) Find the mean and variance of $\mathcal{W}=3 \mathcal{X}+\mathcal{Y}+2$.
(d) If \mathcal{X} and \mathcal{Y} are jointly Gaussian random variables, and \mathcal{W} is as defined in part (c), what is $P\{\mathcal{W}>0\}$?
3. This problem has three independent parts. Do not apply the numbers from one part to the others.
(a) If $\operatorname{var}(\mathcal{X}+\mathcal{Y})=36$ and $\operatorname{var}(\mathcal{X}-\mathcal{Y})=64$, what is $\operatorname{cov}(\mathcal{X}, \mathcal{Y})$? If you are also told that $\operatorname{var}(\mathcal{X})=3 \cdot \operatorname{var}(\mathcal{Y})$, what is $\rho_{\mathcal{X}, \mathcal{Y}}$?
(b) If $\operatorname{var}(\mathcal{X}+\mathcal{Y})=\operatorname{var}(\mathcal{X}-\mathcal{Y})$, are \mathcal{X} and \mathcal{Y} uncorrelated ?
(c) If $\operatorname{var}(\mathcal{X})=\operatorname{var}(Y)$, are \mathcal{X} and \mathcal{Y} uncorrelated?
4. The random point $(\mathcal{X}, \mathcal{Y})$ is uniformly distributed on the shaded region shown.

(a) Find the marginal pdf $f_{\mathcal{X}}(u)$ of the random variable \mathcal{X}. Find $\mathrm{E}[\mathcal{X}]$ and $\operatorname{var}(\mathcal{X})$.
(b) Write down the marginal pdf $f_{\mathcal{Y}}(v)$ of the random variable \mathcal{Y}, and its mean and variance, from your answer to part (a).
(c) Find $f_{\mathcal{Y} \mid \mathcal{X}}(v \mid \alpha)$, the conditional pdf of \mathcal{Y} given that $\mathcal{X}=\alpha$, where $0<\alpha<1 / 2$.

Write down the conditional mean and conditional variance of \mathcal{Y} given $\mathcal{X}=\alpha$.
Find $f_{\mathcal{Y |} \mid \mathcal{X}}(u \mid \alpha)$, the conditional pdf of \mathcal{Y} given that $\mathcal{X}=\alpha$, where $1 / 2<\alpha<1$.
Write down the conditional mean and conditional variance of \mathcal{Y} given $\mathcal{X}=\alpha$.
(d) Now, apply the theorem of total probability to compute $f_{\mathcal{Y}}(v)$, the unconditional pdf of \mathcal{Y} from $f_{\mathcal{Y} \mid \mathcal{X}}(v \mid \alpha)$. Do you get the same answer as in part (b)? Why not?
(e) Given that the value of \mathcal{X} is u, the (conditional) minimum-mean-square-error estimate of \mathcal{Y} is $\mathrm{E}[\mathcal{Y} \mid \mathcal{X}=u]$, the conditional mean of \mathcal{Y}, and the (conditional minimum) meansquare error achieved is $\operatorname{var}(\mathcal{Y} \mid \mathcal{X}=u)$. Use your answers to part (c) to sketch graphs of $\mathrm{E}[\mathcal{Y} \mid \mathcal{X}=u]$ and $\operatorname{var}(\mathcal{Y} \mid \mathcal{X}=u)$ as functions of u for $0<u<1$.
(f) Since $\operatorname{var}(\mathcal{Y} \mid \mathcal{X}=u)$ depends on the value of \mathcal{X}, it is a function of \mathcal{X}. Use LOTUS to compute $\mathrm{E}[\operatorname{var}(\mathcal{Y} \mid \mathcal{X}=u)]$, the expected value of this function. This is the (unconditional) mean-square error that we achieve when we estimate \mathcal{Y} as $\mathrm{E}[\mathcal{Y} \mid \mathcal{X}=u]$, and no other estimate can have smaller mean-square error than this.
(g) Compute $\mathrm{E}[\mathcal{X} \mathcal{Y}]$ and hence determine $\operatorname{cov}(\mathcal{X}, \mathcal{Y})$ and $\rho_{\mathcal{X}, \mathcal{Y}}$.
(h) The minimum-mean-square-error linear estimate of \mathcal{Y} given that the value of \mathcal{X} is u is $\hat{\mathcal{Y}}=\mathrm{E}[\mathcal{X}]+\rho_{\mathcal{X}, \mathcal{Y}} \sqrt{\operatorname{var}(\mathcal{Y}) / \operatorname{var}(\mathcal{X})}(u-\mathrm{E}[\mathcal{X}])$, and the (unconditional) mean-square error of this linear estimate is $\operatorname{var}(\mathcal{Y})\left(1-\rho_{\mathcal{X}, \mathcal{Y}}^{2}\right)$. Sketch $\hat{\mathcal{Y}}$ as a function of u on the same graph that you used in part (e) and compare to the nonlinear (optimum) estimate $\mathrm{E}[\mathcal{Y} \mid \mathcal{X}=u]$. Is $\mathrm{E}[\operatorname{var}(\mathcal{Y} \mid \mathcal{X}=u)] \leq \operatorname{var}(\mathcal{Y})\left(1-\rho_{\mathcal{X}, \mathcal{Y}}^{2}\right)$ as it should be?
5. Suppose that \mathcal{X} and \mathcal{Y} are zero-mean jointly Gaussian random variables with variances σ_{1}^{2} and σ_{2}^{2} respectively and correlation coefficient ρ.
(a) Find the means and variances of the random variables $\mathcal{Z}=\mathcal{X} \cos \theta+\mathcal{Y} \sin \theta$ and $\mathcal{W}=$ $\mathcal{Y} \cos \theta-\mathcal{X} \sin \theta$.
(b) What is $\operatorname{cov}(\mathcal{Z}, \mathcal{W})$?
(c) Find an angle θ such that \mathcal{Z} and \mathcal{W} are independent Gaussian random variables. You may express your answer as a trigonometric function involving $\sigma_{1}^{2}, \sigma_{2}^{2}$, and ρ. In particular, what is the value of θ if $\sigma_{1}=\sigma_{2}$?

