University of Illinois

Spring 2008

ECE 313: Problem Set 13 Functions of Random Variables, Conditional Densities, Correlation and Covariance, Minimum-Mean-Square-Error Estimation

This Problem Set contains five problems

Due:	Wednesday April 30 at the beginning of class.
Reading:	Ross, Chapter 7, Sections 1-5, Chapter 8, Sections 1-4
Noncredit exercises:	Ross Chapter 7: Problems 1, 16, 26, 30 33, 34, 38;
	Theoretical Exercises: 1, 2, 17, 22, 23, 40
	Chapter 8: problems 1-9, 15.

- 1. (Unbelievable but true: this problem is *much* easier than it looks ...).
 - (a) If $\mathcal{X} \sim \mathsf{Gaussian}(0, \sigma^2)$, use the magic formula in Example 7b, Chapter 5.7 of Ross to show that $\mathcal{X}^2 \sim \mathsf{Gamma}\left(\frac{1}{2}, \frac{1}{2\sigma^2}\right)$.
 - (b) Now, suppose that \mathcal{X}, \mathcal{Y} , and \mathcal{Z} are *independent* Gaussian $(0, \sigma^2)$ random variables. Then $\mathcal{X}^2, \mathcal{Y}^2$, and \mathcal{Z}^2 are independent Gamma $(\frac{1}{2}, \frac{1}{2\sigma^2})$ random variables. Use the comment that immediately follows the proof of Proposition 3.1 of Ross (p. 281) to *state* what is the type of pdf of $\mathcal{W} = \mathcal{X}^2 + \mathcal{Y}^2 + \mathcal{Z}^2$, and *write down* explicitly the exact function $f_{\mathcal{W}}(\alpha)$. What is the numerical value of $f_{\mathcal{W}}(5)$ if $\sigma^2 = 4$?
 - (c) Prove that $\mathsf{E}[\mathcal{W}] = 3\sigma^2$. If you actually evaluated an integral to get this answer instead of using LOTUS, shame on you!
 - (d) In a physical application, \mathcal{X}, \mathcal{Y} , and \mathcal{Z} represent the velocity (measured along three perpendicular axes) of a gas molecule of mass m. Thus, $\mathcal{H} = \frac{1}{2}m\mathcal{W}$ is the kinetic energy of the particle. It is an axiom of statistical mechanics that the *average* kinetic energy is $\mathsf{E}[\mathcal{H}] = \mathsf{E}[\frac{1}{2}m\mathcal{W}] = \frac{1}{2}m\mathsf{E}[\mathcal{W}] = \frac{3}{2}m\sigma^2 = \frac{3}{2}kT$ where k is Boltzmann's constant and T is the absolute temperature of the gas in ${}^{\circ}K$. (Note that the average energy is $\frac{1}{2}kT$ per dimension.) Show that the kinetic energy \mathcal{H} has the Maxwell-Boltzmann pdf:

$$f_{\mathcal{H}}(\beta) = \frac{2}{\sqrt{\pi}} (kT)^{-\frac{3}{2}} \sqrt{\beta} \exp\left(-\frac{\beta}{kT}\right) \text{ for } \beta \ge 0.$$

- (e) $\mathcal{V} = \sqrt{\mathcal{W}} = \sqrt{\mathcal{X}^2 + \mathcal{Y}^2 + \mathcal{Z}^2}$ is the *speed* of the molecule. Show that the pdf of \mathcal{V} is $f_{\mathcal{V}}(\gamma) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{\frac{3}{2}} \gamma^2 \exp\left(-\frac{m\gamma^2}{2kT}\right)$, for $\gamma \ge 0$. cf. Theoretical Exercise 1 of Chapter 5.
- (f) What is the average speed of the molecule?
- 2. Let $\mathsf{E}[\mathcal{X}] = 1, \mathsf{E}[\mathcal{Y}] = 4, \mathsf{var}(\mathcal{X}) = 4, \mathsf{var}(\mathcal{Y}) = 9, \text{ and } \rho_{\mathcal{X},\mathcal{Y}} = 0.1.$
 - (a) If $\mathcal{Z} = 2(\mathcal{X} + \mathcal{Y})(\mathcal{X} \mathcal{Y})$, what is $\mathsf{E}[\mathcal{Z}]$?
 - (b) If $\mathcal{T} = 2\mathcal{X} + \mathcal{Y}$ and $\mathcal{U} = 2\mathcal{X} \mathcal{Y}$, what is $cov(\mathcal{T}, \mathcal{U})$?
 - (c) Find the mean and variance of $\mathcal{W} = 3\mathcal{X} + \mathcal{Y} + 2$.
 - (d) If \mathcal{X} and \mathcal{Y} are jointly Gaussian random variables, and \mathcal{W} is as defined in part (c), what is $P\{\mathcal{W} > 0\}$?
- 3. This problem has three independent parts. Do not apply the numbers from one part to the others.
 - (a) If $\operatorname{var}(\mathcal{X} + \mathcal{Y}) = 36$ and $\operatorname{var}(\mathcal{X} \mathcal{Y}) = 64$, what is $\operatorname{cov}(\mathcal{X}, \mathcal{Y})$? If you are also told that $\operatorname{var}(\mathcal{X}) = 3 \cdot \operatorname{var}(\mathcal{Y})$, what is $\rho_{\mathcal{X}, \mathcal{Y}}$?

- (b) If $var(\mathcal{X} + \mathcal{Y}) = var(\mathcal{X} \mathcal{Y})$, are \mathcal{X} and \mathcal{Y} uncorrelated ?
- (c) If $\operatorname{var}(\mathcal{X}) = \operatorname{var}(Y)$, are \mathcal{X} and \mathcal{Y} uncorrelated ?
- 4. The random point $(\mathcal{X}, \mathcal{Y})$ is uniformly distributed on the shaded region shown.

- (a) Find the marginal pdf $f_{\mathcal{X}}(u)$ of the random variable \mathcal{X} . Find $\mathsf{E}[\mathcal{X}]$ and $\mathsf{var}(\mathcal{X})$.
- (b) Write down the marginal pdf $f_{\mathcal{Y}}(v)$ of the random variable \mathcal{Y} , and its mean and variance, from your answer to part (a).
- (c) Find $f_{\mathcal{Y}|\mathcal{X}}(v|\alpha)$, the conditional pdf of \mathcal{Y} given that $\mathcal{X} = \alpha$, where $0 < \alpha < 1/2$. *Write down* the conditional mean and conditional variance of \mathcal{Y} given $\mathcal{X} = \alpha$. Find $f_{\mathcal{Y}|\mathcal{X}}(u|\alpha)$, the conditional pdf of \mathcal{Y} given that $\mathcal{X} = \alpha$, where $1/2 < \alpha < 1$. *Write down* the conditional mean and conditional variance of \mathcal{Y} given $\mathcal{X} = \alpha$.
- (d) Now, apply the theorem of total probability to compute f_Y(v), the unconditional pdf of *Y* from f_{Y|X}(v|α). Do you get the same answer as in part (b)? Why not?
- (e) Given that the value of \mathcal{X} is u, the (conditional) minimum-mean-square-error estimate of \mathcal{Y} is $\mathsf{E}[\mathcal{Y}|\mathcal{X}=u]$, the conditional mean of \mathcal{Y} , and the (conditional minimum) meansquare error achieved is $\mathsf{var}(\mathcal{Y}|\mathcal{X}=u)$. Use your answers to part (c) to sketch graphs of $\mathsf{E}[\mathcal{Y}|\mathcal{X}=u]$ and $\mathsf{var}(\mathcal{Y}|\mathcal{X}=u)$ as functions of u for 0 < u < 1.
- (f) Since $\operatorname{var}(\mathcal{Y}|\mathcal{X} = u)$ depends on the value of \mathcal{X} , it is a *function* of \mathcal{X} . Use LOTUS to compute $\mathsf{E}[\operatorname{var}(\mathcal{Y}|\mathcal{X} = u)]$, the expected value of this function. This is the (unconditional) mean-square error that we achieve when we estimate \mathcal{Y} as $\mathsf{E}[\mathcal{Y}|\mathcal{X} = u]$, and no other estimate can have smaller mean-square error than this.
- (g) Compute $\mathsf{E}[\mathcal{X}\mathcal{Y}]$ and hence determine $\mathsf{cov}(\mathcal{X},\mathcal{Y})$ and $\rho_{\mathcal{X},\mathcal{Y}}$.
- (h) The minimum-mean-square-error linear estimate of \mathcal{Y} given that the value of \mathcal{X} is u is $\hat{\mathcal{Y}} = \mathsf{E}[\mathcal{X}] + \rho_{\mathcal{X},\mathcal{Y}}\sqrt{\mathsf{var}(\mathcal{Y})/\mathsf{var}(\mathcal{X})}(u \mathsf{E}[\mathcal{X}])$, and the (unconditional) mean-square error of this linear estimate is $\mathsf{var}(\mathcal{Y})(1 \rho_{\mathcal{X},\mathcal{Y}}^2)$. Sketch $\hat{\mathcal{Y}}$ as a function of u on the same graph that you used in part (e) and compare to the nonlinear (optimum) estimate $\mathsf{E}[\mathcal{Y}|\mathcal{X} = u]$. Is $\mathsf{E}[\mathsf{var}(\mathcal{Y}|\mathcal{X} = u)] \leq \mathsf{var}(\mathcal{Y})(1 \rho_{\mathcal{X},\mathcal{Y}}^2)$ as it should be?
- 5. Suppose that \mathcal{X} and \mathcal{Y} are zero-mean jointly Gaussian random variables with variances σ_1^2 and σ_2^2 respectively and correlation coefficient ρ .
 - (a) Find the means and variances of the random variables $\mathcal{Z} = \mathcal{X} \cos \theta + \mathcal{Y} \sin \theta$ and $\mathcal{W} = \mathcal{Y} \cos \theta \mathcal{X} \sin \theta$.
 - (b) What is $cov(\mathcal{Z}, \mathcal{W})$?
 - (c) Find an angle θ such that Z and W are *independent* Gaussian random variables. You may express your answer as a trigonometric function involving σ_1^2 , σ_2^2 , and ρ . In particular, what is the value of θ if $\sigma_1 = \sigma_2$?