ECE 313: Problem Set 12
Many Random Variables

This Problem Set contains five problems

Due: Wednesday April 23 at the beginning of class.
 Reading:
 Noncredit Exercises:

1. Random variables X and Y have the joint PDF shown below:

(a) Prepare neat, fully labeled sketches of $f_{X \mid Y}(u \mid v)$.
(b) Find $\mathrm{E}[X \mid Y=v]$ and $\operatorname{Var}[X \mid Y=v]$.
(c) Find $\mathrm{E}[X]$.
2. Continuous random variables X and Y have the joint PDF

$$
f_{X, Y}(u, v)= \begin{cases}\frac{u}{8}, & \text { for } 1 \leq u \leq 3 \text { and } 0 \leq v \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Let R be defined by $R=Y / X$ and let D be the event $R \leq 1 / 3$.
(a) Are X and Y independent? Are they independent conditioned on event D ? Given convincing arguments.
(b) Determine the numerical value of $P(D)$.
(c) Obtain and carefully sketch the PDF's $f_{X}(u)$ and $f_{X \mid D}(u \mid D)$.
(d) Determine the conditional PDF for R given D has occurred.
3. X_{1} and X_{2} are independent random variables. X_{1} is uniformly distributed over $[-1,1]$ and X_{2} is exponentially distributed with parameter $\lambda=1$. Find the pdfs of the RVs $W=X_{1}+X_{2}$ and $Z=X_{1} / X_{2}$.
4. \mathcal{X} and \mathcal{Y} denote independent standard Gaussian random variables.
(a) What is the joint pdf $f_{\mathcal{X}, \mathcal{Y}}(u, v)$ of \mathcal{X} and \mathcal{Y} ?
(b) Sketch the $u-v$ plane and indicate on it the region over which you need to integrate the joint pdf in order to find $P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}$. Compute $P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}$.
(c) Let $\mathcal{Z}=\mathcal{X}^{2}+\mathcal{Y}^{2}$. What is the pdf of \mathcal{Z} ?
(d) Express $P\{|\mathcal{X}|>\alpha\}$ in terms of the complementary unit Gaussian CDF function $Q(x)$, and use this to write $P\{|\mathcal{X}|>\alpha,|\mathcal{Y}|>\alpha\}$ in terms of $Q(x)$. (Remember commas mean intersections).
(e) On your sketch of part (b), show the region over which you must integrate the joint pdf to find $P\{|\mathcal{X}|>\alpha,|\mathcal{Y}|>\alpha\}$. Use your sketch to prove the following result: $P\{|\mathcal{X}|>\alpha,|\mathcal{Y}|>\alpha\}<P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}$ for $\alpha>0$.
(f) Show that inequality of part (e) implies that $Q(x)<\frac{1}{2} \exp \left(-x^{2} / 2\right)$ for $x>0$.
(g) On your sketch of parts (b) and (d), show the region over which you must integrate to find $P\{|\mathcal{X}|<\alpha,|\mathcal{Y}|<\alpha\}$, and prove that

$$
P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2} \leq \alpha^{2}\right\}<P\{|\mathcal{X}|<\alpha,|\mathcal{Y}|<\alpha\}<P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}<2 \alpha^{2}\right\}
$$

Use these inequalities to deduce the lower bound $Q(x)>\frac{1}{4} \exp \left(-x^{2}\right)$ for $x>0$. Note that at $x=0$, equality holds in the upper bound of part (f) but not in this lower bound .
5. Consider random variables X and Y that have the following joint PDF

$$
f_{X, Y}(u, v)=c \sqrt{u^{2}+v^{2}}
$$

where u, v belong to the unit circle centered at the origin.
(a) Find c.
(b) Using LOTUS, compute $\mathrm{E}[f(X, Y)]$.
(c) Calculate $P\left\{f(X, Y) \geq \frac{1}{2}\right\}$.

