University of Illinois

ECE 313: Problem Set 12 Many Random Variables

This Problem Set contains five problems

Due:Wednesday April 23 at the beginning of class.Reading:Noncredit Exercises:

1. Random variables X and Y have the joint PDF shown below:

- (a) Prepare neat, fully labeled sketches of $f_{X|Y}(u|v)$.
- (b) Find $\mathsf{E}[X|Y = v]$ and $\mathsf{Var}[X|Y = v]$.
- (c) Find $\mathsf{E}[X]$.
- 2. Continuous random variables X and Y have the joint PDF

$$f_{X,Y}(u,v) = \begin{cases} \frac{u}{8}, & \text{for } 1 \le u \le 3 \text{ and } 0 \le v \le 2\\ 0, & \text{otherwise} \end{cases}$$

Let R be defined by R = Y/X and let D be the event $R \le 1/3$.

- (a) Are X and Y independent? Are they independent conditioned on event D? Given convincing arguments.
- (b) Determine the numerical value of P(D).
- (c) Obtain and carefully sketch the PDF's $f_X(u)$ and $f_{X|D}(u|D)$.
- (d) Determine the conditional PDF for R given D has occurred.
- 3. X_1 and X_2 are independent random variables. X_1 is uniformly distributed over [-1, 1]and X_2 is exponentially distributed with parameter $\lambda = 1$. Find the pdfs of the RVs $W = X_1 + X_2$ and $Z = X_1/X_2$.

Spring 2008

- 4. \mathcal{X} and \mathcal{Y} denote *independent* standard Gaussian random variables.
 - (a) What is the joint pdf $f_{\mathcal{X},\mathcal{Y}}(u,v)$ of \mathcal{X} and \mathcal{Y} ?
 - (b) Sketch the *u-v* plane and indicate on it the region over which you need to integrate the joint pdf in order to find $P\{\mathcal{X}^2 + \mathcal{Y}^2 > 2\alpha^2\}$. Compute $P\{\mathcal{X}^2 + \mathcal{Y}^2 > 2\alpha^2\}$.
 - (c) Let $\mathcal{Z} = \mathcal{X}^2 + \mathcal{Y}^2$. What is the pdf of \mathcal{Z} ?
 - (d) Express $P\{|\mathcal{X}| > \alpha\}$ in terms of the complementary unit Gaussian CDF function Q(x), and use this to write $P\{|\mathcal{X}| > \alpha, |\mathcal{Y}| > \alpha\}$ in terms of Q(x). (Remember commas mean intersections).
 - (e) On your sketch of part (b), show the region over which you must integrate the joint pdf to find $P\{|\mathcal{X}| > \alpha, |\mathcal{Y}| > \alpha\}$. Use your sketch to prove the following result: $P\{|\mathcal{X}| > \alpha, |\mathcal{Y}| > \alpha\} < P\{\mathcal{X}^2 + \mathcal{Y}^2 > 2\alpha^2\}$ for $\alpha > 0$.
 - (f) Show that inequality of part (e) implies that $Q(x) < \frac{1}{2} \exp(-x^2/2)$ for x > 0.
 - (g) On your sketch of parts (b) and (d), show the region over which you must integrate to find $P\{|\mathcal{X}| < \alpha, |\mathcal{Y}| < \alpha\}$, and prove that

$$P\{\mathcal{X}^2 + \mathcal{Y}^2 \le \alpha^2\} < P\{|\mathcal{X}| < \alpha, |\mathcal{Y}| < \alpha\} < P\{\mathcal{X}^2 + \mathcal{Y}^2 < 2\alpha^2\}.$$

Use these inequalities to deduce the *lower* bound $Q(x) > \frac{1}{4} \exp(-x^2)$ for x > 0. Note that at x = 0, equality holds in the upper bound of part (f) but not in this lower bound.

5. Consider random variables X and Y that have the following joint PDF

$$f_{X,Y}(u,v) = c\sqrt{u^2 + v^2}$$

where u, v belong to the unit circle centered at the origin.

- (a) Find c.
- (b) Using LOTUS, compute $\mathsf{E}[f(X, Y)]$.
- (c) Calculate $P\{f(X, Y) \ge \frac{1}{2}\}$.