ECE 313: Problem Set 10

Functions of Continuous Random Variables; and Hypothesis Testing

This Problem Set contains 6 problems

Due: Wednesday April 9 at the beginning of class.

Reading: Ross, Chapter 5; Powerpoint Lectures 26, 27, and 29 Noncredit Exercises: Ross, Chapter 5, Problems 10-19; 21, 22, 24, 31-41

1. The current I through a semiconductor diode is related to the voltage V across the diode as $I = I_0(\exp(V) - 1)$ where I_0 is the magnitude of the reverse current. Suppose that the voltage across the diode is modeled as a continuous random variable \mathcal{V} with pdf

$$f_{\mathcal{V}}(u) = 0.5 \exp(-|u|), -\infty < u < \infty.$$

Then, the current \mathcal{I} is also a continuous random variable.

- (a) What values can \mathcal{I} take on?
- (b) Find the CDF of \mathcal{I} .
- (c) Find the pdf of \mathcal{I} .
- 2. \mathcal{X} is uniformly distributed on [-1, +1].
 - (a) Find the pdf of $\mathcal{Y} = \mathcal{X}^2$.
 - (b) Find the pdf of $\mathcal{Z} = g(\mathcal{X})$ where $g(u) = \begin{cases} u^2, & u \geq 0 \\ -u^2, & u < 0 \end{cases}$.
- 3. ["Give me an A! Give me a D! Give me a converter! What have we got? An A/D converter! Go Team!"] A signal \mathcal{X} is modeled as a unit Gaussian random variable. For some applications, however, only the quantized value \mathcal{Y} (where $\mathcal{Y} = \alpha$ if $\mathcal{X} > 0$ and $\mathcal{Y} = -\alpha$ if $\mathcal{X} \leq 0$) is used. Note that \mathcal{Y} is a discrete random variable.
 - (a) What is the pmf of \mathcal{Y} ?
 - (b) The squared error in representing \mathcal{X} by \mathcal{Y} is $\mathcal{Z} = \left\{ \begin{array}{l} (\mathcal{X} \alpha)^2, & \text{if } \mathcal{X} > 0, \\ (\mathcal{X} + \alpha)^2, & \text{if } \mathcal{X} \leq 0, \end{array} \right.$ and varies as different trials of the experiment produce different values of \mathcal{X} . We would like to choose the value of α so as to minimize the mean squared error $\mathsf{E}[\mathcal{Z}]$. Use LOTUS to easily calculate $\mathsf{E}[\mathcal{Z}]$ (the answer will be a function of α), and then find the value of α that minimizes $\mathsf{E}[\mathcal{Z}]$.
 - (c) We now get more ambitious and use a 3-bit A/D converter which first quantizes \mathcal{X} to the nearest integer \mathcal{W} in the range -3 to +3. Thus, $\mathcal{W}=3$ if $\mathcal{X}\geq 2.5$, $\mathcal{W}=2$ if $1.5\leq \mathcal{X}<2.5$, $\mathcal{W}=1$ if $0.5\leq \mathcal{X}<1.5$, \cdots , $\mathcal{W}=-3$ if $\mathcal{X}<-2.5$. Note that \mathcal{W} is also a discrete random variable. Find the pmf of \mathcal{W} .
 - (d) The output of the A/D converter is a 3-bit 2's complement representation of \mathcal{W} . Suppose that the output is $(\mathcal{Z}_2, \mathcal{Z}_1, \mathcal{Z}_0)$. What is the pmf of \mathcal{Z}_2 ? the pmf of \mathcal{Z}_1 ? the pmf of \mathcal{Z}_0 ? Note that (1,0,0) which represents -4 is not one of the possible outputs from this A/D converter.

- 4. [Read Example 3d (pp. 217-218) in Chapter 5 of Ross first] Let the straight line segment ACB be a diameter of a circle of unit radius and center C. Consider an arc AD of the circle where the length \mathcal{X} of the arc (measured clockwise around the circle) is a random variable uniformly distributed on $[0, 2\pi)$. Now consider the random chord AD whose length we denote by \mathcal{L} .
 - (a) Find the probability that \mathcal{L} is greater than the side of the equilateral triangle inscribed in the circle.
 - (b) Express \mathcal{L} as a function of the random variable \mathcal{X} , and find the pdf for \mathcal{L} .
- 5. If hypothesis H_0 is true, the pdf of \mathcal{X} is exponential with parameter 5 while if hypothesis H_1 is true, the pdf of \mathcal{X} is exponential with parameter 10.
 - (a) Sketch the two pdfs.
 - (b) State the maximum-likelihood decision rule in terms of a threshold test on the observed value u of the random variable \mathcal{X} instead of a test that involves comparing the likelihood ratio $\Lambda(u) = f_1(u)/f_0(u)$ to 1.
 - (c) What are the probabilities of false-alarm and missed detection for the maximum-likelihood decision rule of part (b)?
 - (d) The Bayesian (minimum probability of error) decision rule compares $\Lambda(u)$ to π_0/π_1 . Show that this decision rule also can be stated in terms of a threshold test on the observed value u of the random variable \mathcal{X} .
 - (e) If $\pi_0 = 1/3$, what is the *average* probability of error of the Bayesian decision rule?
 - (f) What is the average error probability of a decision rule that always decides H_1 is the true hypothesis, regardless of the value taken on by \mathcal{X} ?
 - (g) Show that if $\pi_0 > 2/3$, the Bayesian decision rule always decides that H_0 is the true hypothesis regardless of the value taken on by \mathcal{X} . What is the average probability of error for the maximum-likelihood rule when $\pi_0 > 2/3$?
- 6. Consider the following hypothesis testing problem:

$$\begin{aligned} \mathsf{H}_0 &: & X \sim \mathcal{N}(0, \sigma_0^2) \\ \mathsf{H}_1 &: & X \sim \mathcal{N}(0, \sigma_1^2), \end{aligned}$$

where $\sigma_0^2 < \sigma_1^2$.

- (a) Sketch the two pdfs.
- (b) Show that both the ML decision rule and the Bayes decision rule simplify to comparing |X| to a threshold. Specify the threshold in both cases. (Hint: consider the log likelihood ratio. The threshold is a function of σ_0^2 and σ_1^2 , (and of π_0 and π_1)).
- (c) Calculate the false alarm and missed detection probabilities for the ML decision rule for the case $\sigma_0^2 = 1$, $\sigma_1^2 = 4$.