University of Illinois

ECE 313: Problem Set 3

Axioms of Probability

This Problem Set contains six problems

Due:	Wednesday February 6 at the beginning of class.
Reading:	Ross, Chapter 2, Sections 1-5, and Chapter 4
Noncredit E	xercises: DO NOT turn these in.
Chapter 1:	Problems 1-5, 7, 9;
	Theoretical Exercises 4, 6, 13; Self-Test Problems 1-15.
Chapter 2:	Problems 3, 4, 9, 10,11,12,14;
	Theoretical Exercises 1-3, 6, 10, 11, 16, 19, 20; Self-Test Problems 1-8

1. For $\alpha > 0$, the Gamma function $\Gamma(\alpha)$ is defined as $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} \exp(-t) dt$.

- (a) Show by integration that $\Gamma(1) = 1$.
- (b) Use integration by parts to show that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, and use this to deduce that $\Gamma(n + 1) = n!$.
- (c) If α is not an integer, show that $\Gamma(\alpha + 1) = \alpha(\alpha 1)(\alpha 2)\cdots\Gamma(\alpha \lfloor \alpha \rfloor)$ where $\lfloor \alpha \rfloor$ is the *integer part* of α . Note that $0 < \alpha \lfloor \alpha \rfloor < 1$. For $0 < \beta < 1$, $\Gamma(\beta)$ must be evaluated by numerical integration, except...
- (d) show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Hint: make the change of variables $\sqrt{2t} = x$. Then show that

$$\Gamma\left(\frac{1}{2}\right) = \left(2\int_0^\infty \int_0^\infty \exp(-[x^2 + y^2]/2) \, dx \, dy\right)^{1/2}$$

where the double integral can be evaluated by a change to polar coordinates as in Problem 4(b) of Problem Set 1.

- 2. The binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ denotes the number of subsets of size k drawn from a set of size n.
 - (a) Give a combinatorial proof that $\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i}$. Hint: How many

committees of size k can be formed from a group of m men and n women?

- (b) What is the coefficient of x^k in the polynomial $(1+x)^{m+n}$? Now write $(1+x)^{m+n} = (1+x)^m (1+x)^n$ and find the coefficient of x^k on the right hand side in terms of the coefficients of $(1+x)^m$ and $(1+x)^n$. If you have taken ECE 410, you might recognize a discrete convolution here
- (c) Use the result of part (a) to show that $\binom{2n}{n} = \sum_{i=0}^{n} \left[\binom{n}{i} \right]^{2}$.
- 3. Ross, Chapter 2, Problem 13 (page 57).

Spring 2008

- 4. Find $P(A \cup (B^c \cup C^c)^c)$ in each of the following four cases:
 - (a) A, B, and C are mutually exclusive events and P(A) = 1/3.
 - (b) $P(A) = 2P(B \cap C) = 4P(A \cap B \cap C) = 1/2.$
 - (c) P(A) = 1/2, $P(B \cap C) = 1/3$, and $P(A \cap C) = 0$.
 - (d) $P(A^c \cap (B^c \cup C^c)) = 0.6.$
- 5. ["Eat your broccoli, dear; it's good for you"]
 - (a) Your mother has bought three servings of broccoli and two servings of cauliflower for next week (Monday through Friday) and will serve one vegetable each day.
 - i. Define an appropriate sample space that includes all possible outcomes of this experiment (which you don't get to perform: it is performed on you!). Assume that all the outcomes are equally likely.
 - ii. What is the probability of having broccoli on Monday?
 - iii. What is the probability of having broccoli on Monday and Friday?
 - iv. What is the probability of having broccoli on Monday, Wednesday, and Friday?
 - (b) Suppose instead that A, B, and C denote the events that your mother serves asparagus, broccoli or cauliflower for dinner. From (bitter?) experience, you know that these events are mutually exclusive and that P(A) = 0.2, P(B) = 0.5, and P(C) = 0.3. Each day is an *independent trial*, that is, your mother, a lady of formidable temperament albeit limited culinary skills, makes *independent* decisions as to which vegetable to serve without taking into account your opinion that Cheetos is a vegetable that goes well with any entree. Over a three day period, what is the probability that
 - i. she serves the same vegetable on all three days?
 - ii. she serves the same vegetable exactly two days out of three?
 - iii. she serves different vegetables on the three days?
 - (c) **Optional for 0 Comp II credit:** Write a 500-word essay on why you like dorm food so much.
- 6. (a) $\Omega = \{0, 1, 2, ...\}$ is a countably infinite sample space with $P(n) = \frac{(\ln 2)^n}{2(n!)}$ for all
 - $n \ge 0$. Remember that 0! = 1.
 - i. Show that $P(\Omega) = 1$ for this probability assignment.
 - ii. Prove that the probability that the outcome is an even number is 5/8. Remember that 0 is an even number.
 - (b) Bob & Carol & Ted & Alice take turns (in that order) tossing a coin with P(H) = p, 0 . The first one to toss a Head wins the game. Calculate their win probabilities <math>P(B), P(C), P(T), and P(A) and show that
 - i. P(B) > P(C) > P(T) > P(A).
 - ii. P(B) + P(C) + P(T) + P(A) = 1.