ECE 313: Solutions to Problem Set 12

1. (a) For $1<|v|<2$, the cross-section of the joint pdf surface along the line v is a rectangle extending from $u=-1$ to $u=1$. Therefore the conditional pdf of X given Y is Uniform $[-1,1]$.
Similarly for $|v|<1$, the cross-section extends from $u=-1$ to $u=2$, so the conditional pdf of X given Y is Uniform $[-1,2]$.

(b) Using the uniformity of the conditional pdfs, we have:
$\mathrm{E}[X \mid Y=v]=\left\{\begin{array}{cc}0, & 1 \leq|v| \leq 2 \\ \frac{1}{2}, & |v| \leq 1\end{array}=\operatorname{rect}(v / 2), \quad \operatorname{Var}[X \mid Y=y]=\left\{\begin{array}{lc}1 / 3, & 1 \leq|v| \leq 2 \\ 3 / 4, & |v| \leq 1\end{array}\right.\right.$
(c) It is easy to see that $f_{Y}(v)=\left\{\begin{array}{ll}0.2, & 1<|v|<2, \\ 0.3, & |v|<1, \\ 0, & \text { otherwise }\end{array}\right.$ Hence,
$\mathrm{E}[X]=\int_{-\infty}^{\infty} \mathrm{E}[X \mid Y=v] \cdot f_{Y}(v) d v \int_{-\infty}^{\infty} \operatorname{rect}(v / 2) \cdot f_{Y}(v) d v=\int_{-1}^{1}\left(\frac{1}{2}\right) \cdot(0.3) d v=\frac{3}{10}$
2. (a) First, note that the support of $f_{X, Y}(u, v)$ is a square and the joint density does not depend on v. Thus, conditioned on any value of u, we see that $f_{Y \mid X}(v \mid u)$ must be uniform on $[0,2]$.
$f_{Y}(v)=\int_{-\infty}^{\infty} f_{X, Y}(u, v) d u=\int_{1}^{2}\left(\frac{u}{8}\right) d u=\frac{1}{2}, 0 \leq v \leq 2 \Rightarrow f_{Y}(v) \sim \operatorname{Uniform}[0,2]$
Since $f_{Y \mid X}(v \mid u)=f_{Y}(v), X$ and Y are independent.
However, conditioned on D, X and Y are not independent. Conditioned on D, the support of $f_{X, Y \mid D}(u, v \mid D)$ is a trapezoid. We get this by intersecting the previous support (the rectangle) with the event $\left\{v \leq \frac{u}{3}\right\}$ (see the diagram below). So, given D , the support of Y is $[0,1]$. But given D and $\{X=u\}$, the support of Y is $\left[0, \frac{u}{3}\right]$, which depends on u. Thus, given D, the conditional density of Y given X and the marginal density of Y differ.

(b) $P(D)=P(R \leq 1 / 3)=P\left(\frac{Y}{X} \leq \frac{1}{3}\right)=P\left(Y \leq \frac{X}{3}\right)=\int_{1}^{3} \int_{v=0}^{u / 3}\left(\frac{u}{8}\right) d u=\frac{13}{36}$
(c) For $1 \leq u \leq 3: f_{X}(u)=\int_{-\infty}^{\infty} f_{X, Y}(u, v) d v=\int_{v=0}^{2}\left(\frac{u}{8}\right) d v=\frac{u}{4}$

For $1 \leq u \leq 3: \int_{(u, v) \in D} f_{X, Y}(u, v) d v=\int_{0}^{u / 3}\left(\frac{u}{8}\right) d v=\frac{u^{2}}{24}$

$$
f_{X \mid D}(u \mid D)=\frac{\int_{(u, v) \in D} f_{X, Y}(u, v) d v}{P(D)}=\frac{u^{2} / 24}{13 / 36}=\left\{\begin{array}{cl}
\frac{3 u^{2}}{26}, & 1 \leq u \leq 3 \\
0, & \text { otherwise }
\end{array}\right.
$$

(d) $F_{R \mid D}(r \mid D)=P\{R \leq r \mid D\}=\frac{P\{R \leq r, D\}}{P\{D\}}$

$$
\begin{gathered}
0 \leq r \leq \frac{1}{3}: P\{R \leq r \cap D\}=P\{R \leq r\}=P\{Y \leq r X\}=\int_{1}^{3} \int_{0}^{r u}\left(\frac{u}{8}\right) d v d u=\frac{13 r}{12} \\
r \geq \frac{1}{3}: P\{R \leq r \cap D\}=P\left\{R \leq \frac{1}{3}\right\}=P\{D\}=\frac{13}{36} \\
F_{R \mid D}(r \mid D)=\left\{\begin{array}{ll}
0, & r \leq 0 \\
3 r, & 0 \leq r \leq \frac{1}{3} \\
1, & r \geq \frac{1}{3}
\end{array} \Rightarrow f_{R \mid D}(r \mid D)= \begin{cases}3, & 0 \leq r \leq \frac{1}{3} \\
0, & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

Thus, succinctly, conditioned on D, R is uniformly distributed on $[0,3]$.
3. The densities of X_{1} and X_{2} are given by:

$$
f_{X_{1}}(u)=\left\{\begin{array}{rr}
\frac{1}{2} & -1 \leq u \leq 1 \\
0 & \text { elsewhere }
\end{array} \quad, \quad f_{X_{2}}(u)= \begin{cases}e^{-u} & u \geq 0 \\
0 & u<0\end{cases}\right.
$$

pdf of $W=X_{1}+X_{2}$: Since X_{1} and X_{2} are independent, the pdf of W is just the convolution of the individual pdfs (here, we are keeping the exponential density fixed and flipping and shifting the uniform density - see diagram below).

$$
f_{W}(a)=\left\{\begin{array}{lr}
0, & a<-1 \\
\int_{0}^{a+1} \frac{1}{2} e^{-u} d u, & -1 \leq a<1 \\
\int_{a-1}^{a+1} \frac{1}{2} e^{-u} d u, & a>1
\end{array}=\left\{\begin{array}{lr}
0, & a<-1 \\
\frac{1}{2}\left(1-e^{-(a+1)}\right), & -1 \leq a<1 \\
\frac{1}{2}\left(e-e^{-1}\right) e^{-a}, & a>1
\end{array}\right.\right.
$$

pdf of $Z=X_{1} / X_{2}$: Since $X_{2} \geq 0$,

$$
\begin{aligned}
F_{Z}(b)=P\left\{X_{1} / X_{2} \leq b\right\}=P\left\{X_{1} \leq b X_{2}\right\} & = \begin{cases}\int_{u=-1}^{0} \int_{v=0}^{u / b} \frac{1}{2} e^{-v} d v d u, & b<0 \\
1-\int_{u=0}^{1} \int_{v=0}^{u / b} \frac{1}{2} e^{-v} d v d u, & b \geq 0\end{cases} \\
& = \begin{cases}\frac{1}{2}\left(1+b\left(1-e^{1 / b}\right)\right), & b<0 \\
\frac{1}{2}\left(1+b\left(1-e^{-1 / b}\right)\right), & b \geq 0\end{cases}
\end{aligned}
$$

The areas over which to integrate are indicated in the figures below.

From this, the pdf of Z can be obtained by differentiating

$$
f_{Z}(b)= \begin{cases}\frac{1}{2}\left(1-e^{1 / b}+\frac{e^{1 / b}}{b}\right), & b<0 \\ \frac{1}{2}\left(1-e^{-1 / b}-\frac{e^{-1 / b}}{b}\right), & b \geq 0\end{cases}
$$

4. (a) $f_{\mathcal{X}, \mathcal{Y}}(u, v)=f_{\mathcal{X}}(u) f_{\mathcal{Y}}(v)=\frac{1}{2 \pi} \exp \left[-\frac{u^{2}+v^{2}}{2}\right]$.
(b) The region over which the joint pdf must be integrated in order to find $P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}$ is shown in the left-hand figure below.

The volume outside the circle of radius $\sqrt{2} \alpha$ can be found by changing to polar coordinates. We have $P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}=\int_{r=\sqrt{2} \alpha}^{\infty} \int_{\theta=0}^{2 \pi} \frac{1}{2 \pi} \exp \left(-\frac{r^{2}}{2}\right) r d \theta d r=\int_{r=\sqrt{2} \alpha}^{\infty} r \exp \left(-\frac{r^{2}}{2}\right) d r$ $=-\left.\exp \left(-\frac{r^{2}}{2}\right)\right|_{\sqrt{2} \alpha} ^{\infty}=\exp \left(-\alpha^{2}\right)$.
(c) $\mathcal{Z}=\mathcal{X}^{2}+\mathcal{Y}^{2}$. From part (b), we get that $P\{\mathcal{Z}>\beta\}=1-F_{\mathcal{Z}}(\beta)=\exp (-\beta / 2)$ for $\beta \geq 0$. Hence, $f_{\mathcal{Z}}(\beta)=\frac{1}{2} \exp (-\beta / 2)$ for $\beta \geq 0$. This is an exponential density with parameter $\frac{1}{2}$.
(d) $P\{|\mathcal{X}|>\alpha\}=2 Q(\alpha)$. Hence, $P\{|\mathcal{X}|>\alpha,|\mathcal{Y}|>\alpha\}=P\{|\mathcal{X}|>\alpha\} P\{|\mathcal{Y}|>\alpha\}=$ $4 Q^{2}(\alpha)$.
(e) From the middle figure above, it is obvious that

$$
P\{|\mathcal{X}|>\alpha,|\mathcal{Y}|>\alpha\}=4 Q^{2}(\alpha)<P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}>2 \alpha^{2}\right\}=\exp \left(-\alpha^{2}\right) \text { for } \alpha>0 .
$$

(f) Taking square roots on both sides, we get $Q(x)<\frac{1}{2} \exp \left(-x^{2} / 2\right)$ for $x>0$.
(g) $P\{|\mathcal{X}|<\alpha,|\mathcal{Y}|<\alpha\}=P\{|\mathcal{X}|<\alpha\} P\{|\mathcal{Y}|<\alpha\}=[1-2 Q(\alpha)]^{2}$ is the probability that the random point lies inside the square of side 2α. As shown in the right-hand figure, this square is inscribed by the circle of radius α and circumscribed by the circle of radius $\sqrt{2} \alpha$. Hence,

$$
P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2} \leq \alpha^{2} / 2\right\}<P\{|\mathcal{X}|<\alpha,|\mathcal{Y}|<\alpha\}<P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2}<\alpha^{2}\right\} .
$$

These inequalities are equivalent to the result: $\exp \left(-\alpha^{2}\right)<4 Q(\alpha)-4 Q^{2}(\alpha)<\exp \left(-\alpha^{2} / 2\right)$. Now, $4 Q(\alpha)-4 Q^{2}(\alpha)<4 Q(\alpha)$, and therefore we get $Q(x)>\frac{1}{4} \exp \left(-x^{2}\right)$ for $x>0$. Note that $Q(0)=\frac{1}{2}$ while the bound equals $\frac{1}{4}$ at $x=0$. The upper bound can also be obtained from the above result. Note that since $Q(\alpha) \leq \frac{1}{2}$ for $\alpha>0$, it follows that $4 Q(\alpha)-4 Q^{2}(\alpha)=4 Q(\alpha)[1-Q(\alpha)]>2 Q(\alpha)$ for $\alpha>0$. Hence, $\exp \left(-\alpha^{2} / 2\right)>$ $4 Q(\alpha)-4 Q^{2}(\alpha)>2 Q(\alpha)$ etc.
5. (a) Converting to polar coordinates:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(u, v) d u d v=\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} c r \cdot r d r d \theta=\frac{2 \pi c}{3}=1 \Rightarrow c=\frac{3}{2 \pi}
$$

(b) Using LOTUS:

$$
\mathrm{E}[f(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{3}{2 \pi} \sqrt{u^{2}+v^{2}} \cdot \frac{3}{2 \pi} \sqrt{u^{2}+v^{2}} d u d v=\frac{9}{4 \pi^{2}} \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} r^{3} d r d \theta=\frac{9}{8 \pi}
$$

(c) $f(X, Y)=\frac{3}{2 \pi} \sqrt{X^{2}+Y^{2}}$ has maximum value $\frac{3}{2 \pi}<\frac{1}{2}$. Therefore $P\left\{f(X, Y)>\frac{1}{2}\right\}=0$.

