ECE 313: Solutions to Problem Set 11

1. (a) The marginal pmfs $p_{\mathcal{X}}(u)$ and $p_{\mathcal{Y}}(v)$ are column and row sums as shown in the table below.

$u \vec{v}$	0	1	3	5	Row sum
4	0	$1 / 12$	$1 / 6$	$1 / 12$	$1 / 3$
3	$1 / 6$	$1 / 12$	0	$1 / 12$	$1 / 3$
-1	$1 / 12$	$1 / 6$	$1 / 12$	0	$1 / 3$
Column sum	$1 / 4$	$1 / 3$	$1 / 4$	$1 / 6$	1

(b) The eyeball test tells us that \mathcal{X} and \mathcal{Y} are dependent random variables.
(c) $P\{\mathcal{X} \leq \mathcal{Y}\}=p_{\mathcal{X}, \mathcal{Y}}(0,3)+p_{\mathcal{X}, \mathcal{Y}}(0,4)+p_{\mathcal{X}, \mathcal{Y}}(1,3)+p_{\mathcal{X}, \mathcal{Y}}(1,4)+p_{\mathcal{X}, \mathcal{Y}}(3,4)=\frac{1}{2}$. $P\{\mathcal{X}+\mathcal{Y} \leq 4\}=p_{\mathcal{X}}(0)+p_{\mathcal{X}, \mathcal{Y}}(1,3)+p_{\mathcal{X}, \mathcal{Y}}(1,-1)+p_{\mathcal{X}, \mathcal{Y}}(3,-1)+p_{\mathcal{X}, \mathcal{Y}}(5,-1)=\frac{7}{12}$.
(d) $p_{\mathcal{X} \mid \mathcal{Y}}(u \mid 3)=\frac{p_{\mathcal{X}, \mathcal{Y}}(u, 3)}{p_{\mathcal{Y}}(3)}=1 / 2,1 / 4,1 / 4$ respectively for $u=0,1,5$.
$\mathrm{E}[\mathcal{X} \mid \mathcal{Y}=3]=0 \times \frac{1}{2}+1 \times \frac{1}{4}+5 \times \frac{1}{4}=\frac{3}{2}$.
$\operatorname{var}(\mathcal{X} \mid \mathcal{Y}=3)=\mathrm{E}\left[\mathcal{X}^{2} \mid \mathcal{Y}=3\right]-(\mathrm{E}[\mathcal{X} \mid \mathcal{Y}=3])^{2}=1 \times \frac{1}{4}+5^{2} \times \frac{1}{4}-\left(\frac{3}{2}\right)^{2}=\frac{26}{4}-\frac{9}{4}=\frac{17}{4}$.
2. (a) $p_{\mathcal{X}, \mathcal{Y}}(n, m)=p_{\mathcal{Y} \mid \mathcal{X}}(m \mid n) \cdot p_{\mathcal{X}}(n)=\binom{n}{m} p^{m}(1-p)^{n-m} \cdot \frac{e^{-\lambda T}(\lambda T)^{n}}{n!}$

$$
\begin{aligned}
p_{\mathcal{Y}}(m) & =\sum_{n} p_{\mathcal{X}, \mathcal{Y}(n, m)} \\
& =\sum_{n=m}^{\infty}\binom{n}{m} p^{m}(1-p)^{n-m} \cdot \frac{e^{-\lambda T}(\lambda T)^{n}}{n!} \\
& =\frac{p^{m} e^{-\lambda T}}{(1-p)^{m}} \sum_{n=m}^{\infty} \frac{n!}{m!(n-m)!} \cdot \frac{(1-p)^{n}(\lambda T)^{n}}{n!} \\
& =\frac{p^{m} e^{-\lambda T}}{m!(1-p)^{m}} \sum_{n=m}^{\infty} \frac{[(1-p) \lambda T]^{n}}{(n-m)!} \cdot \frac{[(1-p) \lambda T]^{m}}{[(1-p) \lambda T]^{m}} \\
& =\frac{p^{m} e^{-\lambda T}(1-p)^{m}(\lambda T)^{m}}{m!(1-p)^{m}} \sum_{n=m}^{\infty} \frac{[(1-p) \lambda T]^{n-m}}{(n-m)!} \\
& =\frac{p^{m} e^{-\lambda T}(\lambda T)^{m}}{m!} \cdot e^{(1-p) \lambda T} \\
& =\frac{(\lambda p T)^{m} e^{-\lambda p T}}{m!}
\end{aligned}
$$

(b) Since $\mathcal{Z}=\mathcal{X}-\mathcal{Y}$, it implies that given $\mathcal{X}=n$, the conditional pmf $p_{\mathcal{Z} \mid \mathcal{X}}(k \mid n)$ of \mathcal{Z} is binomial with parameters $(n, 1-p)$. Following similar steps to those of part (a), we can show that \mathcal{Z} is Poisson with parameter $\lambda(1-p) T$ or $(\lambda q) T$.
(c) When $\mathcal{Y}=m$ is observed, it must be that $\mathcal{X} \geq m$. Hence, for $n \geq m \geq 0$, $p_{\mathcal{X} \mid \mathcal{Y}}(n \mid m)=\frac{p_{\mathcal{Y} \mid \mathcal{X}}(m \mid n) p_{\mathcal{X}}(m)}{p_{\mathcal{Y}}(m)}=\frac{\binom{n}{m} p^{m}(1-p)^{n-m} \cdot(\lambda T)^{n} \exp (-\lambda T) / n!}{(\lambda p T)^{m} \cdot \exp (-\lambda p T) / m!}$ $=\frac{(\lambda(1-p) T)^{n-m} \exp (-\lambda(1-p) T)}{(n-m)!}$. This is a displaced Poisson pmf: the conditional pmf of \mathcal{X} is that of the random variable $m+\mathcal{Z}$ where \mathcal{Z} is a Poisson random variable with parameter $\lambda(1-p) T$. Note that $m+\mathcal{Z}$ takes on values $m, m+1, \ldots$
(d) $\mathrm{E}[\mathcal{X} \mid \mathcal{Y}=m]=\mathrm{E}[m+\mathcal{Z}]=m+\lambda(1-p) T$.
3. The joint pdf is as shown in the figure below.

(a) From the left-hand figure above, $f_{\mathcal{X}}(\alpha)=0$ for $\alpha<0$ or $\alpha>1$, while for any $\alpha, 0 \leq \alpha \leq$ 1 ,

$$
f_{\mathcal{X}}(\alpha)=\int_{-\infty}^{\infty} f_{\mathcal{X}, \mathcal{Y}}(\alpha, v) d v=\int_{0}^{1-\alpha} \frac{1}{2} d v+\int_{1-\alpha}^{1} \frac{3}{2} d v=\frac{1}{2}(1-\alpha)+\frac{3}{2} \alpha=\frac{1}{2}+\alpha
$$

(b) When the pdf has constant value over a region, we can find the probability that the random point lies in that region by finding the area of the region and multiplying by the pdf value.
Thus, $P\{\mathcal{X}+\mathcal{Y} \leq 3 / 2\}=1-P\{\mathcal{X}+\mathcal{Y} \geq 3 / 2\}=1-\frac{3}{2} \times\left[\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right]=\frac{13}{16}$ and $P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2} \geq 1\right\}=\frac{3}{2} \times\left[1-\frac{\pi}{4}\right]=\frac{3}{2}-\frac{3 \pi}{8}$.
4. The pdf is nonzero over the shaded region in the left-hand figure shown on the next page.
(a), (b) From the figure, we get that for $v>0$,

$$
f_{\mathcal{Y}}(v)=\int_{u=-v}^{u=+v} c\left(v^{2}-u^{2}\right) \exp (-v) d u=\left.c\left[v^{2} u-\frac{u^{3}}{3}\right] \exp (-v)\right|_{u=-v} ^{u=+v}=c\left(\frac{4}{3}\right) v^{3} \exp (-v)
$$

which is of the form of a gamma pdf with parameters $(4,1)$. Thus, $4 c / 3=1 / \Gamma(4)=$ $1 / 3 \Rightarrow c=1 / 8$.
On the other hand, for $u>0, f_{\mathcal{X}}(u)=\int_{v=u}^{\infty} \frac{1}{8}\left(v^{2}-u^{2}\right) \exp (-v) d v=\frac{1}{4}(1+u) \exp (-u)$, while if $u<0$, the limits are $v=-u$ and ∞. Consequently, $f \mathcal{X}(u)=\frac{1}{4}(1+|u|) \exp (-u),-\infty<$ $u<\infty$.
(c) The pdf of \mathcal{X} is an even function of u and $\int_{0}^{\infty} f_{\mathcal{X}}(u) d u$ is finite. Hence, $\mathrm{E}[\mathcal{X}]=0$.

5. (a) The joint pdf is nonzero on the shaded region shown in the right-hand figure above.
(b) For $u>0, f_{\mathcal{X}}(u)=\int_{v}^{\infty} 2 \exp (-u-v) d v=2 \exp (-2 u)$ and $f_{\mathcal{X}}(u)=0$ for $u<0$.

For $v>0, f_{\mathcal{Y}}(v)=\int_{0}^{v} 2 \exp (-u-v) d u=2 \exp (-v)-2 \exp (-2 v)$ and $f_{\mathcal{Y}}(v)=0$ for $v<0$.
(c) No, the eyeball test says that the random variables are dependent.
(d) $P\{\mathcal{Y}>3 \mathcal{X}\}=\int_{u=0}^{\infty} \int_{v=3 u}^{\infty} 2\left(\exp (-u-v) d v d u=\int_{u=0}^{\infty} 2 \exp (-4 u) d u=\frac{1}{2}\right.$.
(e) For $\alpha>0$,
$P\{\mathcal{X}+\mathcal{Y} \leq \alpha\}=\int_{u=0}^{\alpha / 2} \int_{v=u}^{\alpha-u} 2 e^{-u-v} d v d u=\int_{u=0}^{\alpha / 2} 2 e^{-u}\left[e^{(-u)}-e^{(-\alpha+u)}\right] d u$ $=1-\alpha \exp (-\alpha)-\exp (-\alpha)$.
(f)
$f_{\mathcal{Z}}(\alpha)=\frac{d}{d \alpha} F_{\mathcal{Z}}(\alpha)=\frac{d}{d \alpha} P\{\mathcal{X}+\mathcal{Y} \leq \alpha\}=\frac{d}{d \alpha} 1-\alpha \exp (-\alpha)-\exp (-\alpha)=\alpha \exp (-\alpha)$ for $\alpha>0$ and $f_{\mathcal{Z}}(\alpha)=0$ for $\alpha<0$. This is a gamma pdf with parameters $(2,1)$.
6. The pdf of $(\mathcal{X}, \mathcal{Y})$ is uniformly distributed on the unit disc, and thus has value π^{-1}.

(a) The circle inscribed in the triangle has radius $1 / 2$ (cf. Ross, p. 217). If the midpoint of the chord is outside the circle, then the length \mathcal{L} of the random chord is greater than the side of the equilateral triangle outside the inscribed circle in the triangle. This inscribed circle has radius $1 / 2$ (Ross, p. 217). and hence, $P\left\{\mathcal{L}>\frac{1}{2}\right\}=\left[\pi\left(\frac{1}{2}\right)^{2}\right] \pi^{-1}=\frac{1}{4}$
(b) The length of a chord at distance r from the center is $2 \sqrt{1-r^{2}}$.

Hence, $\mathcal{L}=2 \sqrt{1-\mathcal{R}^{2}}=2 \sqrt{1-\mathcal{X}^{2}-\mathcal{Y}^{2}}$
and $F_{\mathcal{L}}(\alpha)=P\{\mathcal{L} \leq \alpha\}=P\left\{\mathcal{X}^{2}+\mathcal{Y}^{2} \geq 1-\alpha^{2} / 4\right\}=1-\pi\left(1-\alpha^{2} / 4\right) \pi^{-1}=\alpha^{2} / 4$. From this we get that $f_{\mathcal{L}}(\alpha)=\alpha / 2$ for $0 \leq \alpha \leq 2$, and $f_{\mathcal{L}}(\alpha)=0$ otherwise.
(c) $\mathrm{E}[\mathcal{L}]=\int_{0}^{2} \alpha \cdot \frac{\alpha}{2} d \alpha=\frac{4}{3}$

