ECE 313: Solutions to Problem Set 10

1. (a) \mathcal{I} can take on values in the range $\left(-I_{0}, \infty\right)$.
(b) $F_{\mathcal{I}}(v)=0$ for $v<-I_{0}$. For any $v>-I_{0}$, $F_{\mathcal{I}}(v)=P\{\mathcal{I} \leq v\}=P\left\{I_{0}(\exp (\mathcal{V})-1) \leq v\right\}=P\left\{\mathcal{V} \leq \ln \left(1+v / I_{0}\right)\right\}=F_{\mathcal{V}}\left(\ln \left(1+v / I_{0}\right)\right)$.
(c) For $v>-I_{0}$,
$f_{\mathcal{I}}(v)=f_{\mathcal{V}}\left(\ln \left(1+v / I_{0}\right)\right) \frac{1}{1+v / I_{0}} \times \frac{1}{I_{0}}=\frac{f_{\mathcal{V}}\left(\ln \left(1+v / I_{0}\right)\right)}{v+I_{0}}=\left\{\begin{array}{ll}\frac{I_{0} / 2}{\left(v+I_{0}\right)^{2}}, & v \geq 0, \\ \frac{1}{2 I_{0}}, & -I_{0}<v<0,\end{array}\right.$.
Note that the pdf has constant value $1 /\left(2 I_{0}\right)$ from $v=-I_{0}$ to $v=0$.
2. (a) \mathcal{Y} takes on values in $[0,1]$ and hence $F_{\mathcal{Y}}=0$ for $v<0$, and $F_{\mathcal{Y}}(v)=1$ for $v \geq 1$.

For $0 \leq v \leq 1, F_{\mathcal{Y}}(v)=P\{\mathcal{Y} \leq v\}=P\left\{\mathcal{X}^{2} \leq v\right\}=P\{-\sqrt{v} \leq \mathcal{X} \leq \sqrt{v}\}=\sqrt{v}$.
Hence $f_{\mathcal{Y}}(v)=\frac{1}{2 \sqrt{v}}$ if $0 \leq v \leq 1$, and $f_{\mathcal{Y}}(v)=0$, otherwise.
(b) \mathcal{Z} takes on values in $[-1,1]$ and hence, $F_{\mathcal{Z}}=0$ for $v<-1$, and $F_{\mathcal{Z}}(v)=1$ for $v>1$.

For $0 \leq v \leq 1, F_{\mathcal{Z}}(v)=P\{\mathcal{Z} \leq v\}=P\{g(\mathcal{X}) \leq v\}=P\{\mathcal{X} \leq \sqrt{v}\}=\frac{1}{2}[1+\sqrt{v}]$.
For $-1 \leq v \leq 0, F_{\mathcal{Z}}(v)=P\{\mathcal{Z} \leq v\}=P\{g(\mathcal{X}) \leq v\}=P\{\mathcal{X} \leq \sqrt{-v}\}=\frac{1}{2}[1-\sqrt{-v}]$.
Hence, $f_{\mathcal{Z}}(v)=\frac{1}{4 \sqrt{|v|}}$ if $0 \leq|v| \leq 1$, and $f_{\mathcal{Z}}(v)=0$, otherwise. Note that the pdf is an even function, and approaches $+\infty$ as v approaches 0 from either side.
3. (a) The pmf of \mathcal{Y} is $p_{\mathcal{Y}}(\alpha)=p_{\mathcal{Y}}(-\alpha)=\frac{1}{2}$.
(b) $\mathrm{E}[\mathcal{Z}]=\int_{0}^{\infty}(u-\alpha)^{2} \phi(u) d u+\int_{-\infty}^{0}(u+\alpha)^{2} \phi(u) d u=\int_{-\infty}^{\infty}\left(u^{2}+\alpha^{2}\right) \phi(u) d u-4 \int_{0}^{\infty} \alpha u \phi(u) d u$ $=1+\alpha^{2}-2 \sqrt{\frac{2}{\pi}} \alpha$ where we have used the facts that the standard Gaussian random variable has variance 1 , the area under the pdf $\phi(u)$ is 1 , and $\int_{0}^{\infty} u \exp \left(-u^{2} / 2\right) d u=1$ (cf. Problem 5(b) of Problem Set 1) in arriving at the result. $\mathrm{E}[\mathcal{Z}]$ has minimum value $1-\frac{2}{\pi}$ at $\alpha=\sqrt{2 / \pi}$.
(c) $p_{\mathcal{W}}(3)=p_{\mathcal{W}}(-3)=\Phi(-2.5)=0.0062 . \quad p_{\mathcal{W}}(2)=p_{\mathcal{W}}(-2)=\Phi(2.5)-\Phi(1.5)=0.0606$. $p_{\mathcal{W}}(1)=p_{\mathcal{W}}(-1)=\Phi(1.5)-\Phi(0.5)=0.2417 . \quad p_{\mathcal{W}}(0)=\Phi(0.5)-\Phi(-0.5)=0.3830$.
(d) $\mathcal{Z}_{2}, \mathcal{Z}_{1}, \mathcal{Z}_{0}$ are Bernoulli random variables with parameters $p_{2}=P\{\mathcal{W}<0\}=0.3085$, $p_{1}=P\{\mathcal{W} \in\{-2,-1,2,3\}\}=0.3691$, and $p_{0}=P\{\mathcal{W} \in\{-3,-1,1,3\}\}=0.4958$ respectively.
4. (a) \mathcal{X} is uniformly distributed on $[0,2 \pi)$. From the diagram below, it should be obvious that the probability that the random chord is longer than the side of the inscribed equilateral triangle is $P\{2 \pi / 3<\mathcal{X}<4 \pi / 3\}=\frac{1}{3}$.

(b) Since the circle has radius 1 , an arc of length \mathcal{X} subtends angle \mathcal{X} at the center of the circle. Furthermore, the length \mathcal{L} of the chord is $2 \sin (\mathcal{X} / 2)$, increasing from 0 when $\mathcal{X}=0$ to 2 when $\mathcal{X}=\pi$ and decreasing back to 0 at $\mathcal{X}=2 \pi$. For any $x, 0<x<2$,
$F_{\mathcal{L}}(x)=P\{\mathcal{L} \leq x\}=P\{2 \sin (\mathcal{X} / 2) \leq x\}=2 \cdot P\{0 \leq \mathcal{X} \leq 2 \arcsin (x / 2)\}=\left(\frac{2}{\pi}\right) \arcsin \left(\frac{x}{2}\right)$
. Hence,

$$
f_{\mathcal{L}}(x)=\frac{d}{d x} F_{\mathcal{L}}(x)= \begin{cases}\frac{1}{\pi \sqrt{1-(x / 2)^{2}}}, & 0 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

5. (a) The pdfs are as shown below.

(b) $\Lambda(u)=\frac{f_{1}(u)}{f_{0}(u)}=\frac{10 \cdot \exp (-10 u)}{5 \cdot \exp (-5 u)}=2 \cdot \exp (-5 u)$ which has value 2 at $u=0$ and decays away to 0 as $u \rightarrow \infty$. Note that $\Lambda(u)>1$ for $u<0.2 \ln 2$. Thus, the likelihood ratio test is equivalent to deciding in favor of H_{1} if the observed value of \mathcal{X} is smaller than the threshold $0.2 \ln 2$. Equivalently, $\Gamma_{1}=$ $(0,0.2 \ln 2), \Gamma_{0}=(0.2 \ln 2, \infty)$.
(c) $P_{\mathrm{FA}}=\int_{\Gamma_{1}} f_{0}(u) d u=\int_{0}^{0.5 \ln 2} 5 \cdot \exp (-5 u) d u=-\left.\exp (-5 u)\right|_{0} ^{0.2 \ln 2}=-\frac{1}{2}-(-1)=\frac{1}{2}$.
$P_{\mathrm{MD}}=\int_{\Gamma_{0}} f_{1}(u) d u=\int_{0.5 \ln 2}^{\infty} 10 \cdot \exp (-10 u) d u=-\left.\exp (-10 u)\right|_{0.2 \ln 2} ^{\infty}$
$=0-(-\exp (-2 \ln 2))=\frac{1}{4}$.
(d) $\Lambda(u)=2 \cdot \exp (-5 u)>\frac{\pi_{0}}{\pi_{1}}$ for $u<0.2 \ln \left(\frac{2 \pi_{1}}{\pi_{0}}\right)=0.2 \ln 2+0.2 \ln \left(\frac{\pi_{1}}{\pi_{0}}\right)=\xi$. Thus, the minimum-error-probability decision rule is equivalent to deciding in favor of H_{1} if the observed value of \mathcal{X} is smaller than ξ. Note that $\xi<0$ if $\pi_{0}>2 \pi_{1}$, that is, if $\pi_{0}>2 / 3$.
(e) If $\pi_{0}=1 / 3$, then $\xi=0.2 \ln 4$. Hence,
$P_{\mathrm{FA}}=\int_{0}^{0.2 \ln 4} 5 \cdot \exp (-5 u) d u=-\left.\exp (-5 u)\right|_{0} ^{0.2 \ln 4}=-\frac{1}{4}-(-1)=\frac{3}{4}$.
$P_{\mathrm{MD}}=\int_{0.2 \ln 4}^{\infty} 10 \cdot \exp (-10 u) d u=-\left.\exp (-10 u)\right|_{0.2 \ln 4} ^{\infty}=0-(-\exp (-2 \ln 4))=\frac{1}{16}$.
The average error probability thus is $\bar{P}_{e}=\frac{1}{3} P_{\mathrm{FA}}+\frac{2}{3} P_{\mathrm{MD}}=\frac{7}{24}$. Note that since $\pi_{0}<\pi_{1}$,
the Bayesian decision rule allows P_{FA} to increase in return for a decrease in P_{MD} because the latter is weighted more heavily.
(f) If the decision rule always decides H_{11} is the true hypothesis it makes errors if and only if H_{0} is the true hypothesis. Hence, $\bar{P}_{e}=\pi_{0}$.
(g) When $\pi_{0}>2 / 3$, the threshold ξ is less than 0 . Since \mathcal{X} takes on nonnegative values, it is always larger than the threshold, and hence the decision is always H_{0}. The average error probability is π_{1}, and since this is the minimum-error-probability rule, we cannot do any better than this. Note that $\pi_{1}<1 / 3$. When $\pi_{0}>2 / 3$, it follows that $\pi_{0}>2 \pi_{1}$. The average probability of error for the maximum-likelihood rule is $\pi_{0} \cdot(1 / 2)+\pi_{1} \cdot(1 / 4)>$ $2 \pi_{1} \cdot(1 / 2)+\pi_{1} \cdot(1 / 3)=1.25 \pi_{1}$.
6. (a) The pdfs are sketched below:

(b) $\Lambda(u)=\frac{f_{1}(u)}{f_{0}(u)}=\frac{1 / \sqrt{2 \pi \sigma_{1}^{2}} \exp \left\{-u^{2} / 2 \sigma_{1}^{2}\right\}}{1 / \sqrt{2 \pi \sigma_{0}^{2}} \exp \left\{-u^{2} / 2 \sigma_{0}^{2}\right\}}=\frac{\sigma_{0}}{\sigma_{1}} \exp \left\{\frac{u^{2}}{2}\left[\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right]\right\}$

ML Decision Rule: Compare $\Lambda(u)$ to 1 , or equivalently, compare $\log \Lambda(u)$ to 0 :

$$
\begin{aligned}
\log \Lambda(u) & \gtrless 0 \\
\log \left(\frac{\sigma_{0}}{\sigma_{1}} \exp \left\{\frac{u^{2}}{2}\left[\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right]\right\}\right) & \gtrless 0 \\
\log \frac{\sigma_{0}}{\sigma_{1}}+\frac{u^{2}}{2}\left[\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right] & \gtrless 0 \\
u^{2} & \gtrless \frac{2 \log \left(\frac{\sigma_{1}}{\sigma_{0}}\right)}{\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}} \\
|u| & \gtrless \sqrt{\frac{2 \log \left(\frac{\sigma_{1}}{\sigma_{0}}\right)}{\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}}}=\xi
\end{aligned}
$$

So the ML decision rule becomes: Choose H_{1} if $|u| \geq \xi$, otherwise choose H_{0}.

Bayes Decision Rule: Compare $\Lambda(u)$ to $\frac{\pi_{0}}{\pi_{1}}$, or equivalently, compare $\log \Lambda(u)$ to $\log \frac{\pi_{0}}{\pi_{1}}$:

$$
\begin{aligned}
\log \Lambda(u) & \gtrless \log \frac{\pi_{0}}{\pi_{1}} \\
\log \left(\frac{\sigma_{0}}{\sigma_{1}} \exp \left\{\frac{u^{2}}{2}\left[\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right]\right\}\right) & \gtrless \log \frac{\pi_{0}}{\pi_{1}} \\
\log \frac{\sigma_{0}}{\sigma_{1}}+\frac{u^{2}}{2}\left[\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}\right] & \gtrless \log \frac{\pi_{0}}{\pi_{1}} \\
u^{2} & \gtrless \frac{2 \log \left(\frac{\sigma_{1}}{\sigma_{0}} \cdot \frac{\pi_{0}}{\pi_{1}}\right)}{\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}} \\
|u| & \gtrless \sqrt{\frac{2 \log \left(\frac{\sigma_{1}}{\sigma_{0}} \cdot \frac{\pi_{0}}{\pi_{1}}\right)}{\frac{1}{\sigma_{0}^{2}}-\frac{1}{\sigma_{1}^{2}}}}=\gamma
\end{aligned}
$$

So the Bayes decision rule becomes: Choose H_{1} if $|u| \geq \gamma$, otherwise choose H_{0}.
(c) $\sigma_{0}^{2}=1, \sigma_{1}^{2}=4 \Rightarrow \xi=\sqrt{\frac{2 \log \left(\frac{2}{1}\right)}{\frac{1}{1}-\frac{1}{4}}}=1.3596$.

Under $\mathrm{H}_{0}, X \sim \mathcal{N}(0,1)$.
$P_{\mathrm{FA}}=P\left\{\left|X_{0}\right| \geq 1.3596\right\}=1-P\left\{\left|X_{0}\right| \leq 1.3596\right\}=2(1-\Phi(1.3596)) \approx 0.177$
Under $\mathrm{H}_{1}, X \sim \mathcal{N}(0,4)$.
$P_{\mathrm{MD}}=P\left\{\left|X_{1}\right| \leq 1.3596\right\}=P\left\{-\frac{1.3596}{2} \leq \frac{X}{2} \leq \frac{1.3596}{2}\right\}=2 \Phi(0.6798)-1 \approx 0.5034$

