## ECE 313: Solutions to Problem Set 9

1. (a) $\mathrm{E}[\mathcal{Y}]=\mathrm{E}\left[\mathcal{X}^{2}\right]=\int_{-1}^{+1} u^{2}\left(\frac{1}{2}\right) d u=\frac{1}{3} . \quad \mathrm{E}\left[\mathcal{Y}^{2}\right]=\mathrm{E}\left[\mathcal{X}^{4}\right]=\int_{-1}^{+1} u^{4}\left(\frac{1}{2}\right) d u=\frac{1}{5}$.

Hence, $\operatorname{var}(\mathcal{Y})=\mathrm{E}\left[\mathcal{Y}^{2}\right]-(\mathrm{E}[\mathcal{Y}])^{2}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}$.
(b) $\mathrm{E}[\mathcal{Z}]=\mathrm{E}[g(\mathcal{X})]=\int_{-1}^{0}-u^{2}\left(\frac{1}{2}\right) d u+\int_{0}^{+1} u^{2}\left(\frac{1}{2}\right) d u=-\frac{1}{6}+\frac{1}{6}=0$.
(c) $\mathcal{U}$ takes on integer values $\geq 1$. $\mathcal{V}=\sin (\pi \mathcal{U} / 2)=0$ if $\mathcal{U}$ is even. On the other hand, if $\mathcal{U}=4 k+1$, then $\mathcal{V}=+1$ while if $\mathcal{U}=4 k-1$, then $\mathcal{V}=-1$. We get
$\mathrm{E}[\mathcal{V}]=\sum_{k=1}^{\infty} \sin (\pi k / 2)\left(\frac{1}{2}\right)^{k}=\frac{1}{2}-\frac{1}{8}+\frac{1}{32}-\cdots=\frac{1}{2}\left[1-x+x^{2}-\cdots\right]=\frac{1}{2(1+x)}$
where $x=\frac{1}{4} \Rightarrow \mathrm{E}[\mathcal{V}]=\frac{2}{5}$.
2. (a) $\mathrm{E}[\mathcal{R}]=\int_{0}^{1} u \cdot 2 u d u=\frac{2}{3}$. $\mathrm{E}[\mathcal{V}]=\int_{0}^{1} \frac{4 \pi}{3} u^{3} \cdot 2 u d u=\frac{8 \pi}{15}$. $\mathrm{E}[\mathcal{A}]=\int_{0}^{1} 4 \pi u^{2} \cdot 2 u d u=2 \pi$.

The average sphere does not have average volume or average surface area. More generally, $\mathrm{E}[g(\mathcal{X})] \neq g(\mathrm{E}[\mathcal{X}])$.
(b) For $0<u<1$, $u^{n}>u^{n+1}$.

Hence, $\int_{0}^{1} u^{n} \cdot f_{\mathcal{R}}(u) d u=\mathrm{E}\left[\mathcal{R}^{n}\right]>\int_{0}^{1} u^{n+1} \cdot f_{\mathcal{R}}(u) d u=\mathrm{E}\left[\mathcal{R}^{n+1}\right]$.
3. I'm considering, I'm considering!
(a) The number of arrivals in $(0,4]$ is $N(0,4]$, a Poisson random variable with parameter $4 \lambda$. Hence, $\mathrm{E}[N(0,4]]=4 \lambda$.
(b) The event $\{N(0,3]=3\} \cap\{N(2,6]=0\}$ is the same as $\{N(0,2]=3\} \cap\{N(2,6]=0\}$ and thus $P[\{N(0,3]=3\} \cap\{N(2,6]=0\}]=P[\{N(0,2]=3\} \cap\{N(2,6]=0\}]$. We get

$$
P[\{N(0,3]=3\} \cap\{N(2,6]=0\}]=\frac{(2 \lambda)^{3}}{3!} \exp (-2 \lambda) \times \exp (-4 \lambda)=\frac{4 \lambda^{3}}{3} \exp (-6 \lambda)
$$

by independence of Poisson variables on disjoint intervals of time.
(c) The number of arrivals in $(0,6]$ is $N(0,6]$, a Poisson random variable with parameter $6 \lambda$. If it is observed that $N(0,6]=k$, then the maximum-likelihood estimate of the Poisson parameter $6 \lambda$ is $k$ (cf. Problem 2(c) of Problem Set 5), and hence the maximumlikelihood estimate of the arrival rate is $k / 6=\#$ of arrivals/length of interval which is exactly what one would expect.
(d) $P\{N(0, t) \geq 1\}=1-P\{N(0, t)=0\}=1-\exp (-\lambda t)=1-2^{-t}$ when $\lambda=\ln 2$.
4. (a) The inter-arrival time in a Poisson process with arrival rate $\lambda$ (time between two successive chalk breaks on this instance) is an exponential random variable with parameter $\lambda$. Hence, the average length of time between successive chalk-breaks is the mean of this exponential random variable, which is $\lambda^{-1}=10$ minutes.
(b) The number of times that Todd breaks the chalk during a 50 minute lecture is a Poisson random variable $N(0,50]$ with parameter $\lambda \times 50=5$ and mean value $\mathrm{E}[N(0,50]]=5$.
(c) From part (b), we get that $P\{N(0,50]=6\}=\frac{5^{6}}{6!} \exp (-5)$. Now, for $0 \leq k \leq 6$,

$$
\begin{aligned}
P\{\{N(0,25]=k\} \mid\{N(0,50]=6\}\} & =\frac{P\{\{N(0,25]=k\} \cap\{N(0,50]=6\}\}}{P\{N(0,50]=6\}\}} \\
& =\frac{P\{\{N(0,25]=k\} \cap\{N(25,50]=6-k\}\}}{P\{N(0,50]=6\}\}} \\
& =\frac{P\{N(0,25]=k\} P\{N(25,50]=6-k\}\}}{P\{N(0,50]=6\}\}} \\
& =\frac{\frac{(2.5)^{k}}{k!} \exp (-2.5) \times \frac{(2.5)^{6-k}}{(6-k)!} \exp (-2.5)}{\frac{5^{6}}{6!} \exp (-5)} \\
& =\binom{6}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{6-k}
\end{aligned}
$$

Thus, the conditional pmf of $N(0,25]$ given that $\{N(0,50]=6\}$ is a binomial pmf with parameters $\left(6, \frac{1}{2}\right)$ and hence the expected value is 3 .
5. (a) $P\{\mathcal{X}<0\}=\Phi\left(\frac{0-(-10)}{2}\right)=\Phi(5)=1-Q(5)$.
(b) $P\{-10<\mathcal{X}<5\}=\Phi\left(\frac{5-(-10)}{2}\right)-\Phi\left(\frac{-10-(-10)}{2}\right)=\Phi(7.5)-\Phi(0)=\Phi(7.5)-\frac{1}{2}=$ $\frac{1}{2}-Q(7.5)$.
(c) $P\{|\mathcal{X}| \geq 5\}=P\{\mathcal{X} \leq-5\}+P\{\mathcal{X} \geq 5\}=\Phi\left(\frac{-5-(-10)}{2}\right)+1-\Phi\left(\frac{5-(-10)}{2}\right)=\Phi(2.5)+$ $1-\Phi(7.5)=1-Q(2.5)+Q(7.5)$.
(d) $P\left\{\mathcal{X}^{2}-3 \mathcal{X}+2>0\right\}=P\{(\mathcal{X}-1)(\mathcal{X}-2)>0\}=P\{\mathcal{X}<1\}+P\{\mathcal{X}>2\}=\Phi\left(\frac{1-(-10)}{2}\right)+$ $1-\Phi\left(\frac{2-(-10)}{2}\right)=\Phi(5.5)+1-\Phi(6)=1-Q(5.5)+Q(6)$.
6. Let $\mathcal{X} \sim \mathcal{N}\left(0.9,0.003^{2}\right)$ denote the width (in microns) of the trace.
(a) $\{\mathcal{X}<0.9-0.005\}$ or $\{\mathcal{X}>0.9+0.005\}$ for a trace to be deemed defective. $P\{|\mathcal{X}-0.9|>0.005\}=2 \Phi(-0.005 / 0.003)=2 \Phi(-1.666 \ldots)=2 Q(1.666 \ldots) \approx 0.095$.
(b) We need to find the maximum value of $\sigma$ such that $2 Q(0.005 / \sigma) \leq 10^{-2}$. Since $Q(2.575) \approx 0.005$, we get that $0.0005 / \sigma>2.575$, that is, $\sigma \leq 0.005 / 2.575 \approx 0.00194$.
7. $Y(f)=H(f) X(f)=\operatorname{rect}(f / 2) \exp \left(-\pi f^{2}\right)$, and $y(0)=\int_{-\infty}^{\infty} Y(f) d f=\int_{-1}^{1} \exp \left(-\pi f^{2}\right) d f$. But, the integrand is the Gaussian pdf $\mathcal{N}\left(0,(2 \pi)^{-1}\right)$. Hence, $y(0)=\Phi(\sqrt{2 \pi})-\Phi(-\sqrt{2 \pi})=$ $2 \Phi(\sqrt{2 \pi})-1 \approx 0.9826$

