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ECE 313: Solutions to Problem Set 5

1. (a) X denotes a binomial random variable with parameters (N, p). It counts the number of
occurrences of an event A of probability p on N independent trials. Y = N −X counts
the number of occurrences of Ac, an event of probability 1 − p, on the N independent
trials and is thus a binomial random variable with parameters (N, 1− p).

(b) P{X is even} =
(
N

0

)
p0(1− p)N +

(
N

2

)
p2(1− p)N−2 +

(
N

4

)
p4(1− p)N−4 + · · ·

Now, from the binomial theorem (Ross, page 8) we get that
(x + y)N + (−x + y)N = 2

[(
N
0

)
x0yN +

(
N
2

)
x2yN−2 +

(
N
4

)
p4(1− p)N−4 + · · ·

]
, and so,

setting x = p, y = 1 − p, we get P{X is even} = 1
2

[
(p+ 1− p)N + (−p+ 1− p)N

]
=

1
2

[
1 + (1− 2p)N

]
. Notice that the probability is 1/2 for p = 1/2, 1 for p = 0, and 1 (or

0) for p = 1 according as N is even or odd.

2. (a) P{Y is even} = P{Y = 0}+P{Y = 2}+P{Y = 4}+ · · · = exp(−λ)
[
1 + λ2

2! + λ4

4! + · · ·
]

= exp(−λ) cosh(λ) by recognizing the series in square brackets.

(b) 1
2

[
1 + (1− 2p)N

]
= 1

2

[
1 +

(
1− 2λ

N

)N]→ 1
2 [1 + exp(−2λ)] = exp(−λ) exp(λ)+exp(−λ)

2

= exp(−λ) cosh(λ).

(c) For fixed Y = k, the likelihood function (parameterized by θ) is L(θ; k) =
θke−θ

k!
. To

find the ML estimate of λ, we find θ̂ that maximizes L(θ; k). Setting the derivative of
L(θ; k) equal to zero, we get

∂L(θ; k)
∂θ

=
1
k!

[
kθk−1e−θ + θke−θ(−1)

]
=
θk−1e−θ

k!
[k − θ] = 0 ⇒ θ̂ML = k.

3. (a) On average, E[X ] = 105× 0.9 = 94.5 passengers show up for the flight.
(b)

P{X ≤ 100} = 1− P{X > 100} = 1−
105∑

k=101

P{X = k}

= 1−
(

105
101

)
(0.9)101(0.1)4 −

(
105
102

)
(0.9)102(0.1)3 −

(
105
103

)
(0.9)103(0.1)2

−
(

105
104

)
(0.9)104(0.1)1 −

(
105
105

)
(0.9)105(0.1)0

= 1−
(

105
4

)
(0.9)101(0.1)4 −

(
105
3

)
(0.9)102(0.1)3 −

(
105
2

)
(0.9)103(0.1)2

−
(

105
1

)
(0.9)104(0.1)1 −

(
105
0

)
(0.9)105(0.1)0

= 0.9832 . . .

(c) We saw earlier that if X is a binomial random variable with parameters (n, p), then
Y = n−X is a binomial random variable with parameters (n, 1− p).

(d) P{Y ≥ 5} = 1 − P{Y = 0} − P{Y = 1} − P{Y = 2} − P{Y = 3} − P{Y = 4} =
1− exp(−10.5)

[
1 + 10.5

1! + (10.5)2

2! + (10.5)3

3! + (10.5)4

4!

]
= 0.9789 . . . .



4. (a) At least two boxes of Cornies must be bought.

(b) For k ≥ 2, P{X = k} = P (HH · · ·HB)+P (BB · · ·BH) =
(

1
3

)(
2
3

)k−1

+
(

2
3

)(
1
3

)k−1

.

E[X ] =
∞∑
k=2

k ·

[(
1
3

)(
2
3

)k−1

+
(

2
3

)(
1
3

)k−1
]

=
∞∑
k=1

k ·

[(
1
3

)(
2
3

)k−1

+
(

2
3

)(
1
3

)k−1
]
− 1

3
− 2

3
=

3
1

+
3
2
− 1 = 3

1
2
.

It is instructive to do this problem via conditional probabilities. Conditioned on the first
box being an H, we are waiting for a B, an event of probability 1

3 to occur. On average,
an additional 3 boxes must be bought.. Conditioned on the first box being a B, we are
waiting for an H, an event of probability 2

3 to occur. On average, an additional 1.5
boxes must be bought. Hence,

E[X ] = (1 + 3)P (H) + (1 + 1.5)P (B) = 4 ·
(

2
3

)
+ 2.5 ·

(
1
3

)
= 3

1
2
.

(c) Now, Mrs Kirk buys W ≥ 4 boxes of Cornies. Consider the contents of the first two
boxes.
• If the first two boxes have given Jimmy one H and one K (this has probability 4

9),
then in effect he has been transported back in time to the previous year since he
now just has to collect one H and one K. Thus, conditioned on the first two boxes
having an H and a K, W = 2 + X where X was discussed in parts (a) and (b).
• If the first two boxes give Jimmy two H’s (probability 4

9) or two K’s (probability
1
9), then he has to wait for two K’s (or two H’s) to occur. Conditioned on this event
HH (or KK), W = 2 + V where V is a negative binomial random variable with
parameters (2, 1

3) (or (2, 2
3)) and mean 6 (or 3).

Hence, for k ≥ 4, P{W = k} = P{X = k − 2}4
9

+ P{V = k − 2}4
9

+ P{V = k − 2}1
9

=

[(
1
3

)(
2
3

)k−3

+
(

2
3

)(
1
3

)k−3
]

4
9

+

[
(k − 3)

(
1
3

)2(2
3

)k−4
]

4
9

+

[
(k − 3)

(
2
3

)2(1
3

)k−4
]

1
9

which simplifies to P{W = k} =
(2k−2 + 4)(k − 1)

3k
. Computing E[W] from this result is

messy. It is much easier to compute E[W] via conditional probabilities. If the first two
boxes give Jimmy a H and a K, his mother has to buy 3.5 more boxes on average. If he
gets HH, 6 more boxes are needed on average, while if he gets KK, 3 more boxes are
needed on average. Hence,

E[W] = 2 +
(

3
1
2

)
× 4

9
+ 6× 4

9
+ 3× 1

9
= 6

5
9
.

5. (a) Assuming that the CRC detects all errors (which is not strictly true), the probability
that the CRC indicates no error in a received packet is just (1 − p)N , the probability
that all N bits were received correctly.

(b) P{packet lost} = P{packet in error 5 times} = (1− (1− p)N )5 and hence

P{packet is received successfully}
= 1− (1− (1− p)N )5

= 5(1− p)N − 10(1− p)2N + 10(1− p)3N − 5(1− p)4N + (1− p)5N .



(c) Let Q = (1 − p)N . Then, P{Xi = 1} = Q. P{Xi = 2} = [1 − Q]Q. P{Xi = 3} =
[1 − Q]2Q. P{Xi = 4} = [1 − Q]3Q. P{Xi = 5} = [1 − Q]4. Note that the first four
values are those corresponding to a geometric random variable with parameter Q, while
the last is the probability that this random variable has value 5 or more..

E[Xi] = Q+ 2[1−Q]Q+ 3[1−Q]2Q+ 4[1−Q]3Q+ 5[1−Q]4

= 1 + [1−Q] + [1−Q]2 + [1−Q]3 + [1−Q]4

=
1− [1−Q]5

1− [1−Q]
= 5− 10Q+ 10Q2 − 5Q3 +Q4.

Verify that the sum telescopes from the right to the value shown.
(d) P{none of the L packets are lost} = (1− (1− (Q)5)L.

6. (a) We are modeling the guesses as independent trials, and we are not allowing for other
possibilities such as on some questions, the student can eliminate one or more alternatives
and thus improve chances of getting the right answer to 1

4 or 1
3 etc.

(b) The likelihood of observationW = n is
(
N −K
n

)
(0.8)n(0.2)N−K−n for 0 ≤ n ≤ N −K.

(c) For given N and n, the likelihood of part (b) is a function, say f(K) of K. We have

that
f(K)

f(K − 1)
=

(
N−K
n

)
(0.8)n(0.2)N−K−n(

N−(K−1)
n

)
(0.8)n(0.2)N−(K−1)−n

=
N − (K − 1)− n
0.2(N − (K − 1))

≥ 1 iff K ≤

N−1.25n+1. Thus, the likelihood is maximum when K has value K̂ = bN−1.25n+1c.
(d) If n is not a multiple of 4, then the analysis of part (b) shows that f(K̂) is the unique

maximum of the likelihood, and the examiner’s estimate K̃ = N−n−b0.25nc equals the
maximum likelihood estimate. When n is a multiple of 4, then f(K̂) = f(K̂ − 1), and
thus both K̂ and K̂ − 1 are legitimate maximum likelihood estimates of the unknown
quantity. Note that in this case, the examiner’s estimate K̃ = K̂ − 1 and thus the
examiner is using a maximum likelihood estimate (she is just a tough grader!).
For N = 100 and K = 90, W can take on values 0, 1, . . . , 10. The value ofW most likely
to occur is 8. In this case, K̂ = 91 while K̃ = 90 and so the examiner does estimate K
correctly. On the other hand, if W = 4, the examiner estimates K to be K̃ = 95 (erring
on the side of caution), and if W = 10, then K̃ = 88, ouch!

7. The number of red balls drawn is a binomial random variable X with parameters (100, p)
where p = 10/(10 + x). We are told that X = 25 on one experiment.

(a) The maximum-likelihood estimate of x is denoted x̂. Now, we can look at the ratio of
the likelihoods of observing 25 red balls when the number of blue balls is k and k− 1 to
get (

100
25

)
(10/(10 + k))25(k/(10 + k))75(

100
25

)
(10/(9 + k))25((k − 1)/(9 + k))75

=
(

9 + k

10 + k

)100( k

k − 1

)75

and try to figure out the k for which the ratio ≤ 1 which is messy. Alternatively, and
more easily, we know that p̂ = 0.25 maximizes

(
100
25

)
p25(1− p)75. From this, we get that

p̂ = 0.25 = 10/(10 + x̂), and so x̂ = 30.

(b) A confidence interval of length 0.2 gives a confidence level of 1− 1/(100 · 0.22) = 75%.

(c) A confidence level of 96% results in a confidence interval of length 1/
√

100 · 0.04 = 0.5.
Note that the confidence interval is (p̂− 0.25, p̂+ 0.25) = (0, 0.5).


