ECE 413: Solutions to Problem Set 2

1. Define events $C=\{$ At least one of O and G occurs $\}$ and $D=\{$ At least one of O and G does not occur\}. The Karnaugh map below shows the various events of interest:

We are given that $P(C)=P(O \cup G)=0.65$ and $P(D)=P\left(O^{c} \cup G^{c}\right)=0.7$. Now, note that $C \cup D=\Omega$ while $C \cap D=(O \cup G) \cap\left(O^{c} \cup G^{c}\right)=\left(O \cap G^{c}\right) \cup\left(O^{c} \cap G\right)=O \oplus G$. Consequently, $P(C \cup D)=P(\Omega)=1=P(C)+P(D)-P(O \oplus G)=0.65+0.7-P(O \oplus G)$ from which we get that $P(O \oplus G)=0.35$.
2.

$$
\begin{aligned}
& (1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\binom{n}{4} x^{4}+\cdots \\
& (1-x)^{n}=\binom{n}{0}-\binom{n}{1} x+\binom{n}{2} x^{2}-\binom{n}{3} x^{3}+\binom{n}{4} x^{4}-\cdots
\end{aligned}
$$

from which we get that $(1+x)^{n}+(1-x)^{n}=2\left[\binom{n}{0}+\binom{n}{2} x^{2}+\binom{n}{4} x^{4}+\cdots\right]$. Set $x=1$ and note that the left side has value 2^{n} while the right side is twice the number of sets with an even number of elements. More simply, set $x=1$ in $(1-x)^{n}$ to get

$$
0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\cdots \Rightarrow\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\cdots=2^{n-1} .
$$

3. (a) For any event $A, P(A) \leq 1$. Hence, $P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq 1$. It follows that

$$
P(A \cap B) \geq P(A)+P(B)-1
$$

(b) i. Since A is a subset of $A \cup B$, we know that $P(A) \leq P(A \cup B)$. Similarly $P(B) \leq P(A \cup B)$. Adding the two inequalities gives that $P(A)+P(B) \leq 2 P(A \cup B)$, and thus it follows that

$$
\frac{P(A)+P(B)}{2} \leq P(A \cup B)
$$

with equality iff $P(A)=P(B)=P(A \cup B)$ or equivalently, $P(A)=P(B)=P(A \cap B)$
To prove the other inequality, note that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ for any events A and B. Since $P(A \cap B) \geq 0$, it follows that

$$
P(A \cup B) \leq P(A)+P(B)
$$

with equality iff $P(A \cap B)=0$. This bound is sometimes referred to as the union bound.
ii. As shown in the previous part, $P(A) \leq P(A \cup B \cup C), P(B) \leq P(A \cup B \cup C)$ and $P(C) \leq$ $P(A \cup B \cup C)$. Adding the three inequalities gives that $P(A)+P(B)+P(C) \leq 3 P(A \cup B \cup C)$, and thus it follows that

$$
\frac{P(A)+P(B)+P(C)}{3} \leq P(A \cup B \cup C)
$$

with equality iff $P(A)=P(B)=P(C)=P(A \cup B \cup C)$.
In the previous part, we proved that $P(A \cup B) \leq P(A)+P(B)$ holds for events A and B. Let D denote $A \cup B$. Then,

$$
P(A \cup B \cup C)=P(D \cup C) \leq P(D)+P(C)=P(A \cup B)+P(C) \leq P(A)+P(B)+P(C)
$$

Equality holds iff $P(A \cap B)=P(A \cap C)=P(B \cap C)=0$ (which implies that $P(A \cap B \cap C)=0$.)
4. (a) Each club must have at least one member (i.e. the leader) who can be chosen to be any of the n FOMDLIUans. The remaining members of the club can be any subset of the remaining $n-1$ FOMDLIUans. Since there are 2^{n-1} such subsets, we conclude that the number of clubs is $n 2^{n-1}$. More laboriously, we have $n=n\binom{n-1}{0}$ possibilities for clubs with 1 member, $n\binom{n-1}{1}$ possibilities for clubs with 2 members, $n\binom{n-1}{2}$ possibilities for clubs with three members, and so on. Putting this together, we get:

$$
\begin{aligned}
\text { Number of clubs } & =n\binom{n-1}{0}+n\binom{n-1}{1}+n\binom{n-1}{2}+\cdots+n\binom{n-1}{n-2}+n\binom{n-1}{n-1} \\
& =n\left[\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{2}+\cdots+\binom{n-1}{n-2}+\binom{n-1}{n-1}\right] \\
& =n 2^{n-1} .
\end{aligned}
$$

(b) Using the previous part, we see that the number of clubs with exactly k members is given by $n\binom{n-1}{k-1}$ which is the same as $k\binom{n}{k}$, as was proved in class. The first displayed sum in 4(a) is thus $\sum_{k=1}^{n} k\binom{n}{k}$ which we counted to be $n 2^{n-1}$ in part (a). More explicitly, we count the number of clubs by first selecting the members and then choosing the leader from among the members. Fix a number of members k for a particular club. From a pool of n individuals, there are $\binom{n}{k}$ possibilities. Once we select a club of size k, there are now k possibilities to select a leader. Therefore the total number of clubs is given by:

$$
\binom{n}{1} \cdot 1+\binom{n}{2} \cdot 2+\cdots+\binom{n}{n} \cdot n=\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1} .
$$

(c)

$$
\begin{aligned}
\frac{d}{d x}\left[(1+x)^{n}\right] & =n(1+x)^{n-1} \quad \text { (by the Chain Rule) } \\
(1+x)^{n} & =\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots \quad \text { (Binomial Theorem) } \\
\frac{d}{d x}\left[(1+x)^{n}\right] & =\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+4\binom{n}{4} x^{3}+\cdots
\end{aligned}
$$

Evaluate the derivative of $(1+x)^{n}$ at $x=1$ in two different ways and equate the results to get

$$
n 2^{n-1}=\sum_{k=1}^{n} k\binom{n}{k}
$$

5. (a) The Karnaugh map is as shown in the left hand figure below, with some probabilities marked on it. Note that the shaded region is the event $(A \cap B) \cup(B \cap C) \cup(A \cap C)$.

(b) Since $A \cap B$ is the disjoint union of $A \cap B \cap C$ and $A \cap B \cap C^{c}$, we get that $P(A \cap B)=0.1=$ $P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)=0.05+P\left(A \cap B \cap C^{c}\right)$ giving that $P\left(A \cap B \cap C^{c}\right)=0.05$. Since $P(A B \cup B C \cup A C)=0.3=P(A B)+P\left(A B^{c} C\right)+P\left(A^{c} B C\right)$ while $P(A C)=P(A B C)+$ $P\left(A B^{c} C\right)=2 P(B C)=P(A B C)+P\left(A^{c} B C\right)$, we readily obtain that $P\left(A B^{c} C\right)=0.15$ and $P\left(A^{c} B C\right)=0.05$. Since $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.6$ we have that $P\left(A^{c} B^{c}\right)=$ $1-P(A \cup B)=0.4$. Since $P\left(A^{c} B^{c} C\right)=P(C)-P(B C)-P\left(A B^{c} C\right)=0.05$, we get that $P($ cereal snaps, crackles, and pops $)=P\left(A^{c} \cap B^{c} \cap C^{c}\right)=0.55$.
(c) P (the sample fails only the snap test) $=P\left(A B^{c} C^{c}\right)=0.05$.
$P($ the sample fails only the crackle test $)=P\left(A^{c} B C^{c}\right)=0.05$.
$P($ the sample fails only the pop test $)=P\left(A^{c} B^{c} C\right)=0.05$.
6. (a) At least one of the events A, B, C occurs; $-A \cup B \cup C=\left(A^{c} B^{c} C^{c}\right)^{c}$
(b) At most one of the events A, B, C occurs; $-\left(A B^{c} C^{c}\right) \cup\left(A^{c} B C^{c}\right) \cup\left(A^{c} B^{c} C\right) \cup\left(A^{c} B^{c} C^{c}\right)=$ $(A B \cup B C \cup A C)^{c}$
(c) None of the events A, B, C occurs; $-(A \cup B \cup C)^{c}=A^{c} B^{c} C^{c} \quad$ [compare to part (a)]
(d) All three events A, B, C occur; $-A B C$
(e) Exactly one of the events A, B, C occurs; $-\left(A B^{c} C^{c}\right) \cup\left(A^{c} B C^{c}\right) \cup\left(A^{c} B^{c} C\right)$
(f) Events A and B occur, but not $C ;-A B C^{c}$
(g) Either event A occurs, or if not then B also does not occur; $-A \cup A^{c} B^{c}=A \cup B^{c}$

(a)

(b)

(c)

(d)

(e)

(f)

(g)
7. (a) There are $\binom{5}{2}=10$ games in this tournament, and $\binom{n}{2}=\frac{n(n-1)}{2}$ games in general.
(b) Yes. In fact, many schedules can be specified. Here is one: imagine that the teams have been arranged in a circle so that each team can be thought of as having two teams on its left and two teams on its right. Then, each team wears home uniforms when playing a team on its left and away uniforms when playing a team on its right.
(c) There are $2^{10}=1024$ possible outcomes of this tournament.
i. Two teams cannot possibly have $4-0$ records. However, if Team A, say, has a 4-0 record, then we know what happened in 4 games, while the outcomes of the remaining 6 games are arbitrary. Hence, $P($ Team A has a 4-0 record $)=\frac{2^{6}}{2^{10}}=\frac{1}{2^{4}}=\frac{1}{16}$ and $P($ some team has a $4-0$ record $)=5 \times \frac{1}{16}=\frac{5}{16}$. (What axiom are we using here?)
ii. The same argument shows that $P($ some team has a $0-4$ record $)=\frac{5}{16}$.
iii. If Team A wins all four of its games and Team B loses all four of its games, then we know what happened in 7 games (why not 8 ?), and hence we get that
$P($ Team A has 4-0 record; Team B has a $0-4$ record $)=\frac{2^{3}}{2^{10}}=\frac{1}{2^{7}}=\frac{1}{128}$, and
$P($ some team has 4-0 record; some other team has a $0-4$ record $)=20 \times \frac{1}{128}=\frac{5}{32}$.
iv. The remaining teams have lost one game (against the 4-0 team) and won another game (against the 0-4 team), and will have identical 2-2 records if each wins one game and loses one game among the three games that these teams play against one another (e.g. A beats B who beats C who beats A: basketball is not necessarily a transitive game!). Since only 2 of the 8 outcomes of these three games give 2-2 records for all three teams, we get that $P($ one team is $4-0$; another is $0-4$; rest are $2-2)=\frac{5}{32} \times \frac{2}{8}=\frac{5}{128}$.
