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ECE 413: Solutions to Problem Set 2

1. Define events C = {At least one of O and G occurs} and D = {At least one of O and G does not
occur}. The Karnaugh map below shows the various events of interest:

We are given that P (C) = P (O ∪ G) = 0.65 and P (D) = P (Oc ∪ Gc) = 0.7. Now, note that
C ∪ D = Ω while C ∩ D = (O ∪ G) ∩ (Oc ∪ Gc) = (O ∩ Gc) ∪ (Oc ∩ G) = O ⊕ G. Consequently,
P (C ∪D) = P (Ω) = 1 = P (C) + P (D)− P (O ⊕G) = 0.65 + 0.7− P (O ⊕G) from which we get that
P (O ⊕G) = 0.35.
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. Set x = 1 and note

that the left side has value 2n while the right side is twice the number of sets with an even number of
elements. More simply, set x = 1 in (1− x)n to get
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3. (a) For any event A, P (A) ≤ 1. Hence, P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ 1. It follows that

P (A ∩B) ≥ P (A) + P (B)− 1

(b) i. Since A is a subset of A ∪B, we know that P (A) ≤ P (A ∪B). Similarly P (B) ≤ P (A ∪B).
Adding the two inequalities gives that P (A) + P (B) ≤ 2P (A ∪B), and thus it follows that

P (A) + P (B)
2

≤ P (A ∪B)

with equality iff P (A) = P (B) = P (A ∪B) or equivalently, P (A) = P (B) = P (A ∩B)
To prove the other inequality, note that P (A∪B) = P (A) + P (B)−P (A∩B) for any events
A and B. Since P (A ∩B) ≥ 0, it follows that

P (A ∪B) ≤ P (A) + P (B)

with equality iff P (A ∩B) = 0. This bound is sometimes referred to as the union bound.
ii. As shown in the previous part, P (A) ≤ P (A ∪ B ∪ C), P (B) ≤ P (A ∪ B ∪ C) and P (C) ≤

P (A∪B∪C). Adding the three inequalities gives that P (A)+P (B)+P (C) ≤ 3P (A∪B∪C),
and thus it follows that

P (A) + P (B) + P (C)
3

≤ P (A ∪B ∪ C)

with equality iff P (A) = P (B) = P (C) = P (A ∪B ∪ C).
In the previous part, we proved that P (A ∪ B) ≤ P (A) + P (B) holds for events A and B.
Let D denote A ∪B. Then,

P (A ∪B ∪ C) = P (D ∪ C) ≤ P (D) + P (C) = P (A ∪B) + P (C) ≤ P (A) + P (B) + P (C).

Equality holds iff P (A∩B) = P (A∩C) = P (B∩C) = 0 (which implies that P (A∩B∩C) = 0.)



4. (a) Each club must have at least one member (i.e. the leader) who can be chosen to be any of the
n FOMDLIUans. The remaining members of the club can be any subset of the remaining n− 1
FOMDLIUans. Since there are 2n−1 such subsets, we conclude that the number of clubs is n2n−1.
More laboriously, we have n = n
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this together, we get:
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(b) Using the previous part, we see that the number of clubs with exactly k members is given by
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which we counted to be n2n−1 in part (a). More explicitly, we count the number

of clubs by first selecting the members and then choosing the leader from among the members.
Fix a number of members k for a particular club. From a pool of n individuals, there are
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possibilities. Once we select a club of size k, there are now k possibilities to select a leader.
Therefore the total number of clubs is given by:
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(c)

d
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[(1 + x)n] = n(1 + x)n−1 (by the Chain Rule)
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Evaluate the derivative of (1 + x)n at x = 1 in two different ways and equate the results to get
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5. (a) The Karnaugh map is as shown in the left hand figure below, with some probabilities marked on
it. Note that the shaded region is the event (A ∩B) ∪ (B ∩ C) ∪ (A ∩ C).
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(b) Since A ∩ B is the disjoint union of A ∩ B ∩ C and A ∩ B ∩ Cc, we get that P (A ∩ B) = 0.1 =
P (A ∩ B ∩ C) + P (A ∩ B ∩ Cc) = 0.05 + P (A ∩ B ∩ Cc) giving that P (A ∩ B ∩ Cc) = 0.05.
Since P (AB ∪ BC ∪ AC) = 0.3 = P (AB) + P (ABcC) + P (AcBC) while P (AC) = P (ABC) +
P (ABcC) = 2P (BC) = P (ABC) + P (AcBC), we readily obtain that P (ABcC) = 0.15 and
P (AcBC) = 0.05. Since P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.6 we have that P (AcBc) =
1 − P (A ∪ B) = 0.4. Since P (AcBcC) = P (C) − P (BC) − P (ABcC) = 0.05, we get that
P (cereal snaps, crackles, and pops) = P (Ac ∩Bc ∩ Cc) = 0.55.



(c) P (the sample fails only the snap test) = P (ABcCc) = 0.05.
P (the sample fails only the crackle test) = P (AcBCc) = 0.05.
P (the sample fails only the pop test) = P (AcBcC) = 0.05.

6. (a) At least one of the events A,B, C occurs; – A ∪B ∪ C = (AcBcCc)c

(b) At most one of the events A,B, C occurs; – (ABcCc) ∪ (AcBCc) ∪ (AcBcC) ∪ (AcBcCc) =
(AB ∪BC ∪AC)c

(c) None of the events A,B, C occurs; – (A ∪B ∪ C)c = AcBcCc [compare to part (a)]
(d) All three events A,B, C occur; – ABC

(e) Exactly one of the events A,B, C occurs; – (ABcCc) ∪ (AcBCc) ∪ (AcBcC)
(f) Events A and B occur, but not C; – ABCc

(g) Either event A occurs, or if not then B also does not occur; – A ∪AcBc = A ∪Bc
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games in general.

(b) Yes. In fact, many schedules can be specified. Here is one: imagine that the teams have been
arranged in a circle so that each team can be thought of as having two teams on its left and two
teams on its right. Then, each team wears home uniforms when playing a team on its left and
away uniforms when playing a team on its right.

(c) There are 210 = 1024 possible outcomes of this tournament.
i. Two teams cannot possibly have 4-0 records. However, if Team A, say, has a 4-0 record,

then we know what happened in 4 games, while the outcomes of the remaining 6 games are

arbitrary. Hence, P (Team A has a 4-0 record) =
26
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and

P (some team has a 4-0 record) = 5× 1
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=
5
16

. (What axiom are we using here?)

ii. The same argument shows that P (some team has a 0-4 record) =
5
16

.

iii. If Team A wins all four of its games and Team B loses all four of its games, then we know
what happened in 7 games (why not 8?), and hence we get that

P (Team A has 4-0 record; Team B has a 0-4 record) =
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, and

P (some team has 4-0 record; some other team has a 0-4 record) = 20× 1
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.

iv. The remaining teams have lost one game (against the 4-0 team) and won another game
(against the 0-4 team), and will have identical 2-2 records if each wins one game and loses
one game among the three games that these teams play against one another (e.g. A beats B
who beats C who beats A: basketball is not necessarily a transitive game!). Since only 2 of
the 8 outcomes of these three games give 2-2 records for all three teams, we get that

P (one team is 4-0; another is 0-4; rest are 2-2) =
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