University of Illinois

Spring 2008

ECE 313: Solutions to Problem Set 1

1. (a) Let $n>0$ be an integer. Then,

$$
(1-x)\left[1+x+x^{2}+\cdots+x^{n-1}\right]=\left[1+x+x^{2}+\cdots+x^{n-1}\right]-\left[x+x^{2}+\cdots+x^{n}\right]=1-x^{n}
$$

If $x \neq 1$, divide both sides by $(1-x)$ to get $1+x+x^{2}+\cdots+x^{n-1}=\frac{1-x^{n}}{1-x}$.
(b) Since $|x|<1,1+x+x^{2}+\cdots=\lim _{n \rightarrow \infty} 1+x+x^{2}+\cdots+x^{n-1}=\lim _{n \rightarrow \infty} \frac{1-x^{n}}{1-x}=\frac{1}{1-x}$.
(c) The 0-th derivative $f^{(0)}(x)$ is just $f(x)=(1+x)^{n}$ itself. The first derivative is $f^{(1)}(x)=$ $n(1+x)^{n-1}$, the second is $f^{(2)}(x)=n(n-1)(1+x)^{n-2}$, and so on. The k-th derivative is $f^{(k)}(x)=$ $n(n-1) \cdots(n-k+1)(1+x)^{n-k}$, and finally the n-th derivative is $f^{(n)}(x)=n(n-1) \cdots 2 \cdot 1=n$! which is a constant. Hence, the first $n+1$ terms of the Maclaurin series for $f(x)$ are

$$
f(x)=(1+x)^{n} \approx \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{n} \frac{n(n-1) \cdots(n-k+1)}{k!} x^{k}
$$

(d) Since $f^{(n)}(x)$ is a constant, $f^{(k)}(x)=0$ for all $k>n$. Thus, the above $i s$ the complete Maclaurin series for $f(x)$; there is no approximation.
(e) $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)(n-k)(n-k-1) \cdots 2 \cdot 1}{((n-k)(n-k-1) \cdots 2 \cdot 1) k!}=\frac{n(n-1) \cdots(n-k+1)}{k!}$ and so the results match.
(f) Using the chain rule,

$$
\begin{aligned}
g^{(k)}(x) & =(-n)(-n-1)(-n-2) \cdots(-n-k+1)(1-x)^{-n-k}(-1)^{k} \\
& =n(n+1)(n+2) \cdots(n+k-1)(1-x)^{-n-k}
\end{aligned}
$$

Thus, $g^{(k)}(0)=n(n+1)(n+2) \cdots(n+k-1) \neq 0$ for all integers $k \geq 0$. Hence, the MacLaurin series for $g(x)$ contains terms of all degrees, and we have that

$$
g(x)=(1-x)^{-n}=\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{\infty} \frac{n(n+1) \cdots(n+k-1)}{k!} x^{k}
$$

(g) For $n=1$, $n(n+1) \cdots(n+k-1)=k$! while for $n=2, n(n+1) \cdots(n+k-1)=(k+1)$!. Hence,

$$
(1-x)^{-1}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots \quad \text { and } \quad(1-x)^{-2}=\sum_{k=0}^{\infty}(k+1) x^{k}=1+2 x+3 x^{2}+\cdots
$$

(h) The k-th derivative of $h(x)=(1+x)^{a}$ where a is a real number and not necessarily an integer is $h^{(k)}(x)=a(a-1) \cdots(a-k+1)(1+x)^{a-k}$ where the exponent cannot equal 0 when a is not an integer. Thus, the MacLaurin series has terms of all degrees and we have that

$$
h(x)=(1+x)^{a}=\sum_{k=0}^{\infty} \frac{h^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{\infty} \frac{a(a-1) \cdots(a-k+1)}{k!} x^{k}
$$

2. (a) Since $\sin x=x-x^{3} / 3!+x^{5} / 5!-\cdots \approx x-x^{3} / 6$ for small x, we have

$$
\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}} \approx \frac{1}{x^{2}}\left[\frac{1}{\left(1-x^{2} / 6\right)^{2}}-1\right]=\frac{1}{x^{2}}\left[1+2\left(\frac{x^{2}}{6}\right)+3\left(\frac{x^{2}}{6}\right)^{2}+\cdots-1\right]=\frac{1}{3}+\frac{x^{2}}{12}+\cdots
$$

and so the limiting value as $x \rightarrow 0$ is $1 / 3$.
(b) $x^{n} \exp (-a x)$ has maximum value $\left(\frac{n}{a}\right)^{n} \exp (-n)$ at $x=n / a$. Here, $n=25$ and $a=\ln (1.00001)$ giving a maximum value of $0.123365 \ldots \times 10^{150}$ at $x=2500012.5 \ldots$..
3. (a) $\int_{-1}^{2}|x| d x=\int_{-1}^{0}-x d x+\int_{0}^{2} x d x=\left.\frac{-x^{2}}{2}\right|_{-1} ^{0}+\left.\frac{x^{2}}{2}\right|_{0} ^{2}=\frac{1}{2}+2=2.5$.

The substitution $y=1-x$ gives
$\int_{-2}^{1} x(1-x)^{19} d x=\int_{3}^{0}(1-y) y^{19}(-d y)=\int_{0}^{3} y^{19}-y^{20} d y=\frac{3^{20}}{20}-\frac{3^{21}}{21}=-\frac{13 \times 3^{20}}{140}$.
(b) No nonnegative function $f(x)$ can satisfy $\int_{-2}^{1} f(x) d x<0$. The comparison test says that if $f(x) \geq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f\left(x d x \geq \int_{a}^{b} g(x) d x\right.$. Now let $g(x)=0$. More simply, if the curve $f(x)$ lies above the x axis in an interval $[a, b]$, the area under the curve between a and b cannot be negative.
(c) i. False: the chain rule gives $\frac{d}{d x} f(-x)=-g(-x)$.
ii. False: the chain rule gives $\frac{d}{d x} f\left(x^{2}\right)=g\left(x^{2}\right) \cdot 2 x$.
iii. True: according to the chain rule.
iv. False: the chain rule gives $\frac{d}{d x} \exp \left(f\left(x^{2}\right)\right)=\exp \left(f\left(x^{2}\right)\right) g\left(x^{2}\right) \cdot 2 x$.
v. False: the antiderivative of $g(-x)$ is $-f(-x)$, (cf i. above.)
vi. False: the antiderivative of $g\left(x^{2}\right)$ need not be related to $f\left(x^{2}\right)$ at all.
(d)
i. $I=\int_{-1}^{1} \frac{2}{1+x^{2}} d x=\left.2 \cdot \arctan (x)\right|_{-1} ^{1}=2 \cdot\left(\frac{\pi}{4}-\frac{-\pi}{4}\right)=\pi$.
ii. The substitution $y=1 / x$ changes the integrand to $\frac{2}{1+1 / y^{2}}\left(-1 / y^{2}\right) d y=\frac{-2}{1+y^{2}} d y$ which is the integrand for J. However, as x varies from -1 to $0, y$ varies from -1 to $-\infty$. Similarly, as x varies from 0 to $1, y$ varies from ∞ to 1 . Therefore, we get

$$
\int_{-1}^{1} \frac{2}{1+x^{2}} d x=\int_{-1}^{-\infty} \frac{-2}{1+y^{2}} d y+\int_{\infty}^{1} \frac{-2}{1+y^{2}} d y=\int_{-\infty}^{-1} \frac{2}{1+y^{2}} d y+\int_{1}^{\infty} \frac{2}{1+y^{2}} d y=\pi
$$

Thus, the substitution $y=1 / x$ does not change I into J as asserted in the problem statement. iii. No need to re-write the math texts: $\pi \neq 0$.
4. (a) $f(x, y)=\max (x, y)$ takes on values x and y in the regions indicated in the figure below. Hence,

$$
\int_{y=0}^{1} \int_{x=0}^{2} f(x, y) d x d y=\int_{y=0}^{1} \int_{x=0}^{y} y d x d y+\int_{y=0}^{1} \int_{x=y}^{2} x d x d y=\int_{y=0}^{1} y^{2}+2-y^{2} / 2 d y=\frac{13}{6}
$$

(b) The integral is over the exterior of a circle of radius 2 . Thus, a change to polar coordinates gives

$$
\iint_{x^{2}+y^{2}>4}\left(x^{2}+y^{2}\right)^{-2} d x d y=\int_{r=2}^{\infty} \int_{\theta=0}^{2 \pi} \frac{1}{r^{4}} r d \theta d r=\left.2 \pi \frac{-1}{2 r^{2}}\right|_{r=2} ^{\infty}=\frac{\pi}{4}
$$

5. (a) $\frac{d}{d x} \exp \left(-\frac{x^{2}}{2}\right)=-x \exp \left(-\frac{x^{2}}{2}\right)$.
(b) From part (a), $\int_{0}^{\infty} x \exp \left(-\frac{x^{2}}{2}\right) d x=-\left.\exp \left(-\frac{x^{2}}{2}\right)\right|_{0} ^{\infty}=1$.
(c) The integrand is an odd function and hence the integral has value 0 .
