Two different versions of the exam, differing in minor ways, were used. Solutions are given in detail for one version.

1. Given $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.3, \mathrm{P}(\mathrm{C})=0.5, \mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right)=\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}} \cap \mathrm{C}\right)=0.2$.
(a) A Karnaugh map/Venn diagram is very useful in solving problems such as these.

Since A is the union of the disjoint sets $\mathrm{A} \cap \mathrm{B}$ and $\mathrm{A} \cap \mathrm{B}^{\mathrm{C}}$,
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{C}}\right) \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})-\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{C}}\right)=0.3-0.2=0.1$.

Next, $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\mathrm{C}} \cap \mathrm{C}\right)=\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{C}} \cap \mathrm{C}\right)$ (why?)
$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}\left(\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{C}} \cap \mathrm{C}\right)=0.3+0.3-0.1+0.2=0.7$,
and, of course, $\mathrm{P}\left((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})^{\mathrm{C}}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=1-0.7=0.3$. $\mathrm{P}\left(\mathrm{B} \cap \mathrm{C}^{\mathrm{C}}\right)$ cannot be determined.
Finally, $\mathrm{P}\left(\mathrm{C}^{\mathrm{c}} \mid\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{C}}\right)\right)=\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{C}} \cap \mathrm{C}^{\mathrm{c}}\right) / \mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}\right)$
$=P\left(A^{c} \cap B^{c} \cap C\right) /\left[P\left(A^{c} \cap B^{c} \cap C^{c}\right)+P\left(A^{c} \cap B^{c} \cap C\right)\right]$
$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})^{\mathrm{C}}\right) /\left[\mathrm{P}\left((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})^{\mathrm{C}}\right)+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{C}} \cap \mathrm{C}\right)\right]=0.3 /(0.3+0.2)=3 / 5$.
Note that the value of $\mathrm{P}(\mathrm{C})$ is not used anywhere except in deciding that $\mathrm{P}\left(\mathrm{B} \cap \mathrm{C}^{\mathrm{c}}\right)$ cannot be determined.
The alternative version swapped events A and C , and thus the above Karnaugh maps are still valid upon swapping A and C . Now, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ cannot be determined, but $\mathrm{P}(\mathrm{B} \cap \mathrm{C})=0.1, \mathrm{P}\left((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})^{\mathrm{c}}\right)=0.3$, $\mathrm{P}\left(\mathrm{B} \cap \mathrm{C}^{\mathrm{C}}\right)=0.2$, while $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}\right)$ cannot be determined, and hence neither can $\mathrm{P}\left(\mathrm{C}^{\mathrm{C}} \mid\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{C}}\right)\right)$.
2.(a) $\quad \mathbf{X}$ is a binomial random variable with parameters $(10,1 / 2)$, and hence $E[\mathbf{X}]=n p=10 \bullet(1 / 2)=5$.
(b) The number of heads on the first 6 tosses is a binomial random variable \mathbf{Y} with parameters $(6,1 / 2)$.
$\mathrm{P}(\mathrm{A})=\mathrm{P}\{\mathbf{Y}=4\}=\binom{6}{4} \cdot\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{2}=\binom{6}{2} \cdot\left(\frac{1}{2}\right)^{6}=\frac{15}{64}$.
(c) If the event A has occurred, there have been 2 tails on the first six tosses. The number of tails on the remaining four tosses is independent of A , and has average value $4 \bullet(1 / 2)=2$. Hence, $\mathrm{E}[\mathbf{X} \mid \mathrm{A}]=2+2=4$.
(d) $\quad \mathrm{P}(\mathrm{B})=\mathrm{P}\{2$ heads on 6 tosses $\}=\binom{6}{2} \cdot\left(\frac{1}{2}\right)^{6}=\frac{15}{64}=\mathrm{P}(\mathrm{A})$. Now, divide the 10 tosses into three groups: the first 4 , the middle 2, and the last 4 tosses. If the event AB occurs, then the numbers of heads in these three groups must be $4,0,2$ respectively, or $3,1,1$, respectively, or $2,2,0$ respectively. Hence, we get
that $\mathrm{P}(\mathrm{AB})=\left[\binom{4}{4} \cdot\binom{2}{0} \cdot\binom{4}{2}+\binom{4}{3} \cdot\binom{2}{1} \cdot\binom{4}{1}+\binom{4}{2} \cdot\binom{2}{2} \cdot\binom{4}{0}\right] \cdot 2^{-10}=\frac{44}{1024}=\frac{11}{256}$.
Thus, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{AB})}{\mathrm{P}(\mathrm{B})}=\frac{11}{256} \times \frac{64}{15}=\frac{11}{60}$.
The alternative version interchanged A and B, which changes the answer to part (c) to $E[\mathbf{X} \mid A]=4+2=6$.
3.(a) There are $\binom{5}{2}=\frac{5 \times 4}{1 \times 2}=10$ possible pairs of letters, consisting of the pair $\{\mathrm{I}, \mathrm{I}\}, 6$ pairs of the form $\{I, X\}$ where X is one of $\{M, M, A\}, 2$ pairs $\{M, A\}$, and the pair $\{M, M\}$. The conditional probability that the sign still seems to read MIAMI is $1,1 / 4,1 / 8$, and $1 / 4$ respectively for these pairs falling down. The theorem of total probability thus gives
$P\{\operatorname{sign}$ still seems to read MIAMI $\}=\left[1 \times \frac{1}{10}+\frac{1}{4} \times \frac{6}{10}+\frac{1}{8} \times \frac{2}{10}+\frac{1}{4} \times \frac{1}{10}\right]=\frac{12}{40}=\frac{3}{10}$.
(b) From Bayes' formula, we get that P\{2 M's fell down |sign still seems to read MIAMI $\}$
$=\frac{P\{\text { sign still seems to read MIAMI } \mid 2 \text { M's fell down }\} P\{2 \text { M's fell down }\}}{P\{\text { sign still seems to read MIAMI }\}}=\frac{1 / 40}{12 / 40}=\frac{1}{12}$.
The alternative version asked for the conditional probability that the two I's fell down, which is $\frac{4 / 40}{12 / 40}=\frac{1}{3}$.
4. $\quad \mathrm{E}[\mathbf{X}]=\operatorname{var}(\mathbf{X})=\lambda$.
$\mathrm{E}\left[(\mathbf{X}-2)^{2}\right]=\mathrm{E}\left[\mathbf{X}^{2}\right]-4 \bullet \mathrm{E}[\mathbf{X}]+4=\operatorname{var}(\mathbf{X})+(\mathrm{E}[\mathbf{X}])^{2}-4 \bullet \mathrm{E}[\mathbf{X}]+4=\lambda+\lambda^{2}-4 \bullet \lambda+4=\lambda^{2}-3 \bullet \lambda+4$. Alternatively, the theorem of parallel axes gives $\mathrm{E}\left[(\mathbf{X}-2)^{2}\right]=\mathrm{E}\left[(\mathbf{X}-2)^{2}\right]+(\lambda-2)^{2}=\lambda+(\lambda-2)^{2}$. The numerical answers are 4 or 8 according as $\lambda=3$ or 4 .

