1. This problem is most easily solved with a Karnaugh map. From the information about disjoint events A and B , we readily obtain the map on the left below. Those who refuse to draw Karnaugh maps and visualize the problem* should work it out the hard way as $\mathrm{P}(\mathrm{AB})=0$ implies $\mathrm{P}\left(\mathrm{AB}^{c}\right)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{AB})=1 / 2$ and $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mathrm{B}\right)=\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{AB})=1 / 4$, and hence $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mathrm{B}^{\mathrm{c}}\right)=\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)-\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mathrm{B}\right)=1 / 2-1 / 4=1 / 4$ also. Reverting back to diagrams, we see that since A and C are independent, we get that $P(A C)=P(A) P(C)=(1 / 2)(2 / 3)=1 / 3$, which gives the diagram on the right.

Next, note that since $P(B \mid C)=1 / 4$, we get that $P(B C)=P(B \mid C) P(C)=(1 / 4)(2 / 3)=1 / 6$ which gives the lefthand diagram below. Finally, the answers can be obtained as shown on the diagram on the right. We get
that $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=11 / 12, \mathrm{P}(\mathrm{AB} \cup \mathrm{BC} \cup \mathrm{CA})=1 / 2$, and $\mathrm{P}\left(\mathrm{C}^{\mathrm{c}} \mid \mathrm{A} \oplus \mathrm{B}^{\mathrm{c}}\right)=(1 / 12) / 3 / 12=1 / 3$.

Two slightly different versions of Problems 2-4 were used on the exam. Generic solutions are provided below.
2. It is of the utmost importance to form the habit of drawing a sketch before starting problems such as these.

The problem asked for $\mathrm{P}\left\{3 \mathbf{X}^{2}<(15+\alpha) \mathbf{X}-5 \alpha\right\}$ where $\alpha=2$ or 4 depending on the version of the exam. Now, $\left\{3 \mathbf{X}^{2}<(15+\alpha) \mathbf{X}-5 \alpha\right\}=\left\{3 \mathbf{X}^{2}-(15+\alpha) \mathbf{X}+5 \alpha<0\right\}=\{(3 \mathbf{X}-\alpha)(\mathbf{X}-5)<0\}$, that is, either $\{(3 \mathbf{X}-\alpha)<0$ and $(\mathbf{X}-5)>0\}$ or $\{(3 \mathbf{X}-\alpha)>0$ and $(\mathbf{X}-5)<0\}$. The first condition is equivalent to $\mathbf{X}<\alpha / 3$ and $\mathbf{X}>5$ which obviously cannot be satisfied. The second condition is equivalent to $\{\alpha / 3<\mathbf{X}<5\}$ and the probability of this event is the area under the pdf between $\alpha / 3$ and 5 , that is, the

[^0]shaded area ahown in the figure. We get $\int_{\mathrm{a} / 3}^{5} \mathrm{f}(\mathrm{u}) \mathrm{du}=\int_{\mathrm{a} / 3}^{4}(\pi / 8) \sin (\pi \mathrm{u} / 4)$ du since the pdf is zero between 4
and 5. We get $\mathrm{P}\left\{\left\{3 \mathbf{X}^{2}<(15+\alpha) \mathbf{X}-5 \alpha\right\}=-\left.\frac{1}{2} \cos (\pi \mathrm{u} / 4)\right|_{\mathrm{a} / 3} ^{4}=\frac{1}{2}[1+\cos (\pi \alpha / 12)]=\frac{2+\sqrt{3}}{4}\right.$ or $\frac{3}{4}$
depending on the version of the exam.
3.(a) $\quad \mathrm{P}\{|\mathbf{X}|<8\}=\mathrm{P}\{-8<\mathbf{X}<8\}=\Phi((8-\mu) / \sigma)-\Phi((-8-\mu) / \sigma)=\Phi(0.1 \bullet(8-\mu))-[1-\Phi(0.1 \bullet(8+\mu))]$
$=\Phi(0.6)+\Phi(1)-1=0.5670 \ldots$ or $\Phi(0.4)+\Phi(1.2)-1=0.5403 \ldots$ depending on the version of the exam. A common error was using $\sigma=100$ rather than $\sigma=10$ in the calculations.
(b) $\left.\mathrm{E}[\mathbf{X}-\alpha)^{2}\right]=\mathrm{E}\left[\mathbf{X}^{2}-2 \alpha \mathbf{X}+\alpha^{2}\right]=\mathrm{E}\left[\mathbf{X}^{2}\right]-\mathrm{E}[2 \alpha \mathbf{X}]+\mathrm{E}\left[\alpha^{2}\right]=\mathrm{E}\left[\mathbf{X}^{2}\right]-2 \alpha \mathrm{E}[\mathbf{X}]+\mathrm{E}\left[\alpha^{2}\right]$
$=\operatorname{var}(\mathbf{X})+\mu^{2}-2 \alpha \mu+\alpha^{2}=\operatorname{var}(\mathbf{X})+(\mu-\alpha)^{2}=100+4=104$ for both versions of the exam.
(c) $\quad \mathbf{Y}=(\mathbf{X}-\mu)^{2}$ takes on values ≥ 0 only. Hence, for any $\mathrm{v} \geq 0$,
$\mathrm{F}_{\mathbf{Y}}(\mathrm{v})=\mathrm{P}\{\mathbf{Y} \leq \mathrm{v}\}=\mathrm{P}\left\{(\mathbf{X}-\mu)^{2} \leq \mathrm{v}\right\}=\mathrm{P}\{-\sqrt{\mathrm{v}} \leq \mathbf{X}-\mu \leq \sqrt{\mathrm{v}}\}=\mathrm{P}\{\mu-\sqrt{\mathrm{v}} \leq \mathbf{X} \leq \mu+\sqrt{\mathrm{v}}\}$
$=\Phi((\mu+\sqrt{\mathrm{v}}-\mu) / \sigma)-\Phi((\mu-\sqrt{\mathrm{v}}-\mu) / \sigma)=\Phi(\sqrt{\mathrm{v}} / \sigma)-\Phi(\sqrt{\mathrm{v}} / \sigma)$.
Now, the derivative of $\Phi(x)$ is $\phi(x)=(1 / \sqrt{2 \pi}) \cdot \exp \left(-\mathrm{x}^{2} / 2\right)$, and hence by the chain rule,
$\mathrm{f}_{\mathbf{Y}}(\mathrm{v})=\frac{\mathrm{d}}{\mathrm{dv}} \mathrm{F}_{\mathbf{Y}}(\mathrm{v})=\frac{\mathrm{d}}{\mathrm{dv}}[\Phi(\sqrt{\mathrm{v}} / \sigma)-\Phi(\sqrt{\mathrm{v}} / \sigma)]=(1 / 2 \sigma)(1 \sqrt{2 \pi \mathrm{v}}) \cdot \exp \left(-\mathrm{v} / 2 \sigma^{2}\right)+(1 / 2 \sigma)(1 \sqrt{2 \pi \mathrm{v}}) \cdot \exp \left(-\mathrm{v} / 2 \sigma^{2}\right)$ $=(1 / \sigma \sqrt{2 \pi \mathrm{v}}) \cdot \exp \left(-\mathrm{v} / 2 \sigma^{2}\right)=(0.1 / \sqrt{2 \pi \mathrm{v}}) \cdot \exp (-0.005 \mathrm{v})$ for $\mathrm{v} \geq 0$, and $\mathrm{f}_{\mathbf{Y}}(\mathrm{v})=0$ for $\mathrm{v}<0$. This is a gamma pdf with parameters $\left(1 / 2,1 / 2 \sigma^{2}\right)=(0.5,0.005)$ as shown on e.g. Slide 31 of Powerpoint Lecture \#27. Last week in class, we derived this result for the case $\sigma=1$.
4. Let μ denote the arrival rate of the process. Then, both $\mathbf{N}(0, \mathrm{~T}]$ and $\mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]$ are Poisson random variables with parameter μ T.
(a) Hence, $\mathrm{P}(\mathrm{A})=\mathrm{P}\{\mathbf{N}(0, \mathrm{~T}]=1\}=\mu \mathrm{T} \cdot \exp (-\mu \mathrm{T})$ and $\mathrm{P}(\mathrm{B})=\mathrm{P}\{\mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]=0\}=\exp (-\mu \mathrm{T})$.
(b) $\quad \mathrm{P}(\mathrm{AB})=\mathrm{P}\{\mathbf{N}(0, \mathrm{~T}]=1, \mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]=0\}=\mathrm{P}\{\mathbf{N}(0,0.5 \mathrm{~T}]=1, \mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]=0\}$ since the single arrival must have occurred during $(0,0.5 \mathrm{~T}]$. But, $\mathbf{N}(0,0.5 \mathrm{~T}]$ and $\mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]$ are independent random variables because the time intervals are disjoint. Hence,
$\mathrm{P}(\mathrm{AB})=\mathrm{P}\{\mathbf{N}(0,0.5 \mathrm{~T}]=1, \mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]=0\}=\mathrm{P}\{\mathbf{N}(0,0.5 \mathrm{~T}]=1\} \cdot \mathrm{P} \mathbf{N}(0.5 \mathrm{~T}, 1.5 \mathrm{~T}]=0\}$
$=(\mu \mathrm{T} / 2) \cdot \exp (-\mu \mathrm{T} / 2) \cdot \exp (-\mu \mathrm{T})=(\mu \mathrm{T} / 2) \cdot \exp (-3 \mu \mathrm{~T} / 2)$, and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{AB}) / \mathrm{P}(\mathrm{A})=(1 / 2) \cdot \exp (-\mu \mathrm{T} / 2)$.

[^0]: * "There are none so blind as those who will not see..."

