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1 . This problem is most easily solved with a Karnaugh map.  From the information about disjoint events A

and B, we readily obtain the map on the left below.  Those who refuse to draw Karnaugh maps and visualize
the problem* should work it out the hard way as P(AB) = 0 implies P(AB c) = P(A) – P(AB) = 1/2 and
P(AcB) = P(B) – P(AB) = 1/4, and hence P(AcBc) = P(Ac) – P(AcB) = 1/2 – 1/4 = 1/4 also.  Reverting back
to diagrams, we see that since A and C are independent, we get that P(AC) = P(A)P(C) = (1/2)(2/3) = 1/3,
which gives the diagram on the right.

A

B

C

0 1/21/41/4

A

B

C

0

1/3

1/41/4
1/6

1/3

1/6

Next, note that since P(B|C) = 1/4, we get that P(BC) = P(B|C)P(C) = (1/4)(2/3) = 1/6 which gives the left-
hand diagram below.  Finally, the answers can be obtained as shown on the diagram on the right.  We get

that P(A ∪ B ∪ C) = 11/12, P(AB ∪ BC ∪ CA) = 1/2, and P(Cc | A ⊕  Bc) = (1/12)/3/12 = 1/3.
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Two slightly different versions of Problems 2-4 were used on the exam.  Generic solutions are provided below.

2 . It is of the utmost importance to form the habit of drawing a sketch before starting problems such as these.

f(u)

u
4α/3

The problem asked for P{3X2 < (15 + α)X  – 5α} where α = 2 or 4 depending on the version of the exam.
Now, {3X2 < (15 + α)X  – 5α} = {3X2 – (15 + α)X  + 5α < 0} = {(3X – α)(X  – 5) < 0}, that is,
either {(3X –  α) < 0 and (X  – 5) > 0} or {(3X –  α) > 0 and (X  – 5) < 0}.  The first condition is
equivalent to X  < α/3 and X  > 5 which obviously cannot be satisfied.  The second condition is equivalent
to {α/3 < X  < 5} and the probability of this event is the area under the pdf between α/3 and 5, that is, the

* “There are none so blind as those who will not see…”
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shaded area ahown in the figure.  We get  ∫
a/3

5

f(u) du = ∫
a/3

4

(π/8)sin(πu/4) du since the pdf is zero between 4

and 5.  We get P{{3X2 < (15 + α)X  – 5α} = –
1
2 cos(πu/4)
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 or 
3
4

depending on the version of the exam.

3.(a) P{|X | < 8} = P{–8 < X  < 8} = Φ((8 – µ)/σ) – Φ((–8 – µ)/σ) = Φ(0.1•(8 – µ)) – [1 – Φ(0.1•(8 + µ))]
= Φ(0.6) + Φ(1) – 1 = 0.5670… or Φ(0.4) + Φ(1.2) – 1 = 0.5403… depending on the version of the exam.
A common error was using σ = 100 rather than σ = 10 in the calculations.

(b) E[(X  – α)2] = E[X2 – 2αX   + α2] = E[X2] – E[2αX]  + E[α2] = E[X2] – 2αE[X]  + E[α2]
= var(X) + µ2 – 2αµ + α2 = var(X) + (µ – α)2 = 100 + 4 = 104 for both versions of the exam.

(c) Y  = (X  – µ) 2 takes on values ≥ 0 only.  Hence, for any v ≥ 0,

FY(v) = P{Y  ≤ v} = P{(X  – µ) 2 ≤ v} = P{– v ≤ X  – µ ≤ v} = P{µ – v ≤ X  ≤ µ + v}

= Φ((µ + v – µ)/σ) – Φ((µ – v – µ)/σ) = Φ( v/σ) – Φ( v/σ).

Now, the derivative of Φ(x) is φ(x) = (1/ 2π)•exp(–x2/2), and hence by the chain rule,

fY(v) = 
d
dv

FY(v) = 
d
dv

 [Φ( v/σ) – Φ( v/σ)] = (1/2σ)(1/ 2πv)•exp(–v/2σ2) +  (1/2σ)(1/ 2πv)•exp(–v/2σ2)

= (1/σ 2πv)•exp(–v/2σ2) = (0.1/ 2πv)•exp(–0.005v)for v ≥ 0, and fY(v) = 0 for v < 0.   This is a gamma
pdf with parameters (1/2, 1/2σ2) = (0.5, 0.005) as shown on e.g. Slide 31 of Powerpoint Lecture #27.  Last
week in class, we derived this result for the case σ = 1.

4 . Let µ denote the arrival rate of the process.  Then, both N(0,T] and N(0.5T, 1.5T] are Poisson random
variables with parameter µT.

(a) Hence, P(A) = P{N(0,T] = 1} = µT•exp(–µT) and P(B) = P{ N(0.5T, 1.5T] = 0} = exp(–µT).
(b) P(AB) = P{N(0,T] = 1, N(0.5T, 1.5T] = 0} = P{N(0,0.5T] = 1, N(0.5T, 1.5T] = 0} since the single arrival

must have occurred during (0, 0.5T].  But, N(0,0.5T] and N(0.5T, 1.5T] are independent random variables
because the time intervals are disjoint.  Hence,
P(AB) = P{N(0,0.5T] = 1, N(0.5T, 1.5T] = 0} = P{N(0,0.5T] = 1}•PN(0.5T, 1.5T] = 0}
= (µT/2)•exp(–µT/2)•exp(–µT) = (µT/2)•exp(–3µT/2), and P(B|A) = P(AB)/P(A) = (1/2)•exp(–µT/2).


