1. [5+5+5 points] Consider a game with probability of winning \(p = 1/3 \). If we win, we receive \$10, otherwise we pay \$2. Assume that we play the game until we win for the first time.

 (a) Find the probability that we earn \$4.

 Solution: To earn \$4, we need to lose 3 times (we lose \$2 every time) and then to win one time (we win \$10). The probability of this event is \((2/3)^3 \times (2/3) \times (1/3) = 8/81\).

 (b) Find the mean value of our payoff (i.e., our expected earnings).

 Solution: Let \(L \) denote the number of games played until we win the game for the first time. Then, \(L \sim \text{Geo}(1/3) \). Our payoff will be \(-2(L - 1) + 10\). Taking the expectation and using the fact that \(E[L] = 1/p = 3 \), our expected payoff is \(-2(3 - 1) + 10 = 6\).

 (c) Now assume that instead of stopping at the first win, we keep playing the game an infinite number of times. Let \(L_1 \) be the number of games needed until the first win. Let \(L_2 \) denote the number of games, after the first \(L_1 \) trials, until the second win. Find \(P(L_2 = 3 | L_1 = 5) \).

 Solution: \(L_1 \) is clearly independent of \(L_2 \) (in a Bernoulli process, all geometric random variables are independent). Therefore, \(P(L_2 = 3 | L_1 = 5) = P(L_2 = 3) = (2/3)^2 \times (1/3) = 4/27\).

2. [6+6+6+3 points] Consider the experiment of rolling two fair dice, each with 6 faces numbered 1, 2, 3, 4, 5, 6. Let \(S \) and \(P \) denote the sum and product of the numbers showing on the two dice, respectively.

 (a) Find the mean of \(P \).

 Solution: Let \(X_1 \) and \(X_2 \) denote the numbers showing on the two dice. We have

 \[P\{X_i = k\} = \frac{1}{6}, \quad \text{for } i = 1, 2; \ k = 1, 2, \ldots, 6. \]

 Furthermore, \(X_1 \) and \(X_2 \) are independent. The mean of \(P \) can be calculated as

 \[E[P] = E[X_1X_2] = E[X_1]E[X_2], \]

 while for \(i = 1, 2 \) we have

 \[E[X_i] = \sum_{k=1}^{6} \frac{1}{6}k = \frac{7}{2}. \]

 Hence,

 \[E[P] = \left(\frac{7}{2} \right)^2 = \frac{49}{4}. \]

 (b) Find the probability that \(S \) is even.

 Solution: Define the following events: \(E_i = \text{"}X_i \text{ is even"} \), \(O_i = \text{"}X_i \text{ is odd"} \) for \(i = 1, 2 \). Clearly, \(P(E_i) = P(O_i) = 1/2, i = 1, 2 \). We have \(P(\text{"}S \text{ is even"}) = P(E_1E_2) + P(O_1O_2) = P(E_1)P(E_2) + P(O_1)P(O_2) \), since \(X_1 \) and \(X_2 \) are independent. Thus,

 \[P(\text{"}S \text{ is even"}) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}. \]
(c) Find the probability that S is even given that P is even.

Solution: We have

$$P(\text{"S is even" | "P is even"}) = \frac{P(\text{"S is even"}, \text{"P is even"})}{P(\text{"P is even"})} = \frac{P(E_1E_2)}{1 - P(O_1O_2)} = \frac{1}{3}.$$

(d) Are "S is even" and "P is even" mutually independent? Justify your answer.

Solution: Since $P(\text{"S is even"}) \neq P(\text{"S is even" | "P is even"})$, "S is even" and "P is even" are not mutually independent.

3. [6+6+6 points] When looking for the next smartphone to buy, you narrow down to two leading brands. The first brand claims that their phone lifetime is uniformly distributed over the interval 0 to 4 years, while the second brand claims that their phone lifetime in years is exponentially distributed with parameter $\lambda = 1/2$.

(a) If you use the expectation of lifetime (the larger the better), then which brand should you pick? Justify your answer.

Solution: Let X be the lifetime of a phone from the first brand and Y be the lifetime of a phone from the second brand. We have $X \sim \text{Unif}[0, 4]$ and $Y \sim \text{Exp}(\lambda)$, where $\lambda = 1/2$. Therefore, $E[X] = (0 + 4)/2 = 2$ and $E[Y] = 1/\lambda = 2$. Hence, both brands are equally good in terms of expectation of lifetime.

(b) If you will replace your phone after 2 years anyway, then a better metric would be the probability that the phone is still working after 2 years. Which brand should you pick now? Justify your answer.

Solution: Using the pdf and properties of uniform and exponential random variables we have

$$P(X > 2) = \int_{2}^{4} \frac{1}{4} du = \frac{1}{2},$$

$$P(Y > 2) = e^{-\lambda^2} = e^{-1} = \frac{1}{e}.$$

Hence, $P(X > 2) > P(Y > 2)$, i.e., you should pick the first brand.

(c) If your mother only wants to replace her phone after 5 years, then which brand would you pick for her? Justify your answer.

Solution: Only phones from the second brand have positive probability of working after five years. Hence, you should choose the second brand for your mother.

4. [4+6+4 points] Buses arrive at a bus stop according to a Poisson process with arrival rate $\lambda = 4$ per hour. Let N_t denote the number of buses arriving in the time interval $[0, t]$. Recall that for a fixed $t > 0$, N_t is a Poisson random variable with parameter $4t$.

(a) Find the probability that no bus arrives in the first $t = 0.25$ hours. Provide your answer in terms of e.

Solution: The probability is given by $P[0.25 = 0] = e^{-\lambda t} = e^{-4\times0.25} = e^{-1}$.

(b) Find the conditional probability that there is 1 arrival in the interval $(0.5h, 1h]$ given that there are 2 arrivals in the interval $[0, 1h]$. Here, ‘h’ denotes ‘hours’.

Solution: Suppressing ‘h’ for notational convenience, let A be the event that there is 1 arrival in the time interval $(0.5, 1]$, B the event that there are 2 arrivals in the interval $[0, 1]$, and C the event that there is 1 arrival in the interval $[0, 0.5]$. Then, the conditional
probability is given by

\[
\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A \cap C]}{\mathbb{P}[C]} = \frac{\mathbb{P}[A|C]}{\mathbb{P}[C]}
\]

\[
= \frac{e^{-4\times 0.5(4\times 0.5)} e^{-4\times 0.5(4\times 0.5)^{1/2}}}{1!} = \frac{e^{-4\times 1(4\times 1)^2}}{2!} = \frac{e^{-4\times 2^1} e^{-2^2}}{2!} = \frac{4e^{-2} e^{-2}}{2!} = \frac{1}{2}
\]

(c) Let \(X \) denote the number of arrivals in \([0, 1h]\) and let \(Y \) denote the number of arrivals in \((1h, 2h]\). Find \(\mathbb{P}(Y = 2|X = 1) \).

Solution: Since \(X \) and \(Y \) are independent and \(X \) and \(Y \) have identical distributions, \(\mathbb{P}(Y = 2|X = 1) = \mathbb{P}(Y = 2) = \mathbb{P}[N_1 = 2] = e^{-\lambda t} \frac{(\lambda t)^2}{2!} = e^{-4}(4)^2 = 8e^{-4} \).

5. **[4+4+6 points]** Consider the following \(s-t \) network, where link \(i \) fails independently with probability \(p_i \):

![Network Diagram]

Denote by \(q_i = 1 - p_i \) the probability that link \(i \) works.

(a) Let \(Y \) denote the capacity of the network, i.e., the maximum flow rate from \(s \) to \(t \). What are the possible values of \(Y \)?

Solution: \(Y \) takes values in the set \(\{0, 5, 10\} \).

(b) Compute \(\mathbb{P}(Y = 5) \).

Solution: \(Y = 5 \) if all links work except for link 4. Therefore, \(\mathbb{P}(Y = 5) = q_1 q_2 q_3 p_4 q_5 \).

(c) Compute the probability of network outage, which corresponds to the event that at least one link fails along every \(s-t \) path.

Solution: The network fails if either link 1 or 5 fail, which happens with probability \(p_1 + p_5 - p_1 p_5 \).

If links 1 and 5 work, then the network fails if both link 4 and the serial link 2-3 fails, which has probability \(q_1 q_5 p_4 p_{2,3} \). Here, \(p_{2,3} \) denotes the probability that the serial link 2-3 fails, which is given by \(p_{2,3} = p_2 + p_3 - p_2 p_3 \).

Therefore, we have

\[
\mathbb{P}(\text{outage}) = \mathbb{P}(Y = 0) = p_1 + p_5 - p_1 p_5 + q_1 q_5 p_4 (p_2 + p_3 - p_2 p_3).
\]

6. **[12+12 points]** The two parts of this problem are unrelated.

(a) A blind man waits at a bus stop serviced by the buses A and B. He plans to take the next bus arriving at the bus stop. Let \(X \) denote the arrival time of bus A and \(Y \) denote the arrival time of bus B. \(X \) is an exponential random variable with mean value 1 and \(Y \) is also exponential with mean value 10. Additionally, \(X \) and \(Y \) are independent. The blind man wants to take bus A. What is the probability that he takes the wrong bus?

Solution: He takes the wrong bus when \(Y \) is less than \(X \). \(X \) and \(Y \) are independent so the joint distribution is the product of the marginals.
\[P(Y < X) = \int_0^\infty \int_0^\infty f_{X,Y}(u,v)dvdu \]
\[= \int_0^\infty \int_v^\infty e^{-u}(0.1e^{-0.1v})dvdu \]
\[= \int_v^\infty e^{-v}(0.1e^{-0.1v})dv \]
\[= \int_0^\infty 0.1e^{-1.1v}dv \]
\[= \frac{1}{11} \]

(b) Let \(X \) and \(Y \) be random variables with joint pdf
\[f_{X,Y}(u,v) = \begin{cases} 8uv, & 0 \leq u \leq v, 0 \leq v \leq 1 \\ 0, & \text{otherwise} \end{cases} \]
Find \(f_{X|Y}(u|v) \) for any \(0 \leq u \leq v \leq 1 \) and \(E[X|Y = v] \) for any \(0 \leq v \leq 1 \).

Solution: We first note that \(f_{X|Y}(u|v) = \frac{f_{X,Y}(u,v)}{f_Y(v)} \).

\[f_Y(v) = \int_0^v 8uvdu = 4vu^2|_0^v = 4v^3, \quad 0 \leq v \leq 1 \]
\[f_{X|Y}(u|v) = \frac{8uv}{4v^3} = \frac{2u}{v}, \quad 0 \leq u \leq v \leq 1. \]

Moreover,
\[E[X|Y = v] = \int_0^v uf_{X|Y}(u|v)du \]
\[= \int_0^v \frac{2u^2}{v}du \]
\[= \frac{2v^3}{3}, \quad 0 \leq v \leq 1. \]

7. [7+7+7 points] Let \(R_1 = 1 + W_1 \) denote the value of a 1Ω resistor, where \(W_1 \sim \text{Unif}[−1,1] \) is the manufacturing error. Let \(R_2 = 2 + W_2 \) denote the value of a 2Ω resistor, where \(W_2 \sim \text{Unif}[−1,1] \) is the manufacturing error as well. Assume that \(W_1 \) and \(W_2 \) are independent, i.e., \(R_1, R_2 \) are independent. Suppose that a 3Ω resistor is made by concatenating \(R_1 \) and \(R_2 \), i.e., \(R_3 = R_1 + R_2 \).

(a) Find \(E[R_3] \) and \(\text{Var}(R_3) \).

Solution: Since \(R_3 = R_1 + R_2 = 3 + W_1 + W_2 \), the mean is given by \(E[R_3] = E[3 + W_1 + W_2] = 3 \). The variance is given by

\[\text{Var}(R_3) = \text{Var}(3 + W_1 + W_2) = \text{Var}(W_1) + \text{Var}(W_2) = \frac{2^2}{12} + \frac{2^2}{12} = \frac{2}{3}. \]

Here, the independence of \(W_1 \) and \(W_2 \) has been used.
(b) Assume that we bought 10 samples X_1, X_2, \ldots, X_{10}, of R_1, i.e., $X_i = 1 + W_i$ and $W_i \sim \text{Unif}[-1,1], i = 1, 2, \ldots, 10$ are independent random variables. Find the mean square error, $\mathbb{E}[(\bar{X} - \mu)^2]$, of the sample mean $\bar{X} = (X_1 + X_2 + \cdots + X_{10})/10$, where $\mu = \mathbb{E}[X_i], i = 1, 2, \ldots, 10$.

Solution: First, $\sigma^2 = \text{Var}(X_i) = \text{Var}(W_i) = \frac{2^2}{12} = \frac{1}{3}, i = 1, 2, \ldots, 10$. Additionally, \bar{X} is unbiased, i.e., $\mathbb{E}[\bar{X}] = \mu = 1$. Then, the MSE is

$$
\mathbb{E}[(\bar{X} - \mu)^2] = \text{Var}(\bar{X}) = \frac{1}{100} \sum_{i=1}^{10} \text{Var}(X_i) = \frac{\sigma^2}{10} = \frac{1}{30}.
$$

(c) Use Markov’s inequality to upper bound $\mathbb{P}((\bar{X} - \mu)^2 \geq 0.1)$.

Solution: By Markov’s inequality,

$$
\mathbb{P}((\bar{X} - \mu)^2 \geq 0.1) \leq \frac{\mathbb{E}[(\bar{X} - \mu)^2]}{0.1} = 10 \times \frac{1}{30} = \frac{1}{3}.
$$

8. [10+10+10 points] Assume that if hypothesis 0 (H_0) is true, then the random variable X takes values $-2, -1, 0, 1, 2$, each with probability $1/5$, and if hypothesis 1 (H_1) is true, then the random variable X takes the values -1 with probability $1/4$, 0 with probability $1/2$ and 1 with probability $1/4$. The prior probabilities satisfy $\pi_0/\pi_1 = 2$.

(a) Find the MAP decision rule given an observation $X = k$.

Solution:

<table>
<thead>
<tr>
<th>X</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>$1/5$</td>
<td>$1/5$</td>
<td>$1/5$</td>
<td>$1/5$</td>
<td>$1/5$</td>
</tr>
<tr>
<td>H_1</td>
<td>0</td>
<td>$1/4$</td>
<td>$1/2$</td>
<td>$1/4$</td>
<td>0</td>
</tr>
</tbody>
</table>

It is clear that for $X = 2$ and $X = -2$, H_0 will be selected.

For $X = -1$ and $X = 1$, we have $\Lambda(1) = \Lambda(-1) = \frac{1/4}{1/5} = \frac{5}{4} < 2$ and hence, H_0 will be selected as well.

For $X = 0$, we have $\Lambda(0) = \frac{1/2}{1/5} = \frac{5}{2} > 2$ and hence, H_1 will be selected in this case.

(b) Compute the average error probability p_e of the MAP decision rule.

Solution: From $\pi_0/\pi_1 = 2$ we get $\pi_0 = 2/3$ and $\pi_1 = 1/3$.

$$
p_e = \pi_0 P_{\text{false alarm}} + \pi_1 P_{\text{miss}}
= \frac{2}{3} \times \frac{1}{3} + \frac{1}{3} \left(\frac{1}{4} + \frac{1}{4} \right)
= \frac{27}{90}
$$

(c) Suppose that instead of an observation of X we are given the sum of two independent realizations of X (under the same hypothesis). If the sum of these two realizations is 0, which hypothesis will the ML decision rule declare as the true hypothesis?

Solution:

Denote by X_1 and X_2 the outcome of the two realizations of X, and by Y the sum $X_1 + X_2$.

Under H_0, we have
\[
P(Y = 0|H_0) = P(X_1 = 0, X_2 = 0|H_0) + P(X_1 = 1, X_2 = -1|H_0) \\
+ P(X_1 = -1, X_2 = 1|H_0) + P(X_1 = -2, X_2 = 2|H_0) \\
+ P(X_1 = 2, X_2 = -2|H_0) \\
= P(X_1 = 0|H_0)P(X_2 = 0|H_0) + P(X_1 = 1|H_0)P(X_2 = -1|H_0) \\
+ P(X_1 = -1|H_0)P(X_2 = 1|H_0) + P(X_1 = -2|H_0)P(X_2 = 2|H_0) \\
+ P(X_1 = 2|H_0)P(X_2 = -2|H_0) = 5 \left(\frac{1}{5} \right)^2 = \frac{1}{5}.
\]

Under H_1, we have
\[
P(Y = 0|H_1) = P(X_1 = 0, X_2 = 0|H_1) + P(X_1 = 1, X_2 = -1|H_1) + P(X_1 = -1, X_2 = 1|H_1) \\
= P(X_1 = 0|H_1)P(X_2 = 0|H_1) + P(X_1 = 1|H_1)P(X_2 = -1|H_1) \\
+ P(X_1 = -1|H_1)P(X_2 = 1|H_1) = \frac{1}{22} + 2 \frac{1}{44} = \frac{3}{8}.
\]

Since $1/5 < 3/8$, H_1 will be chosen as the correct hypothesis.

9. [10 points] Let $X \sim \mathcal{N}(1, 1)$. Use Chebyshev’s inequality to obtain an upper bound for $P(3 + |2X - 2|^3 \geq 67)$.

\textbf{Solution:}
\[
P(3 + |2X - 2|^3 \geq 67) = P(|2X - 2|^3 \geq 4^3) = P(|2X - 2| \geq 4) \\
\leq \frac{\text{Var}(X)}{2^2} \leq \frac{1}{4}.
\]

10. [4+8 points] Let $X \sim \mathcal{N}(0, 1)$ and $Y = aX + b$ for some real numbers a, b with $a > 0$. Suppose $\sigma_Y^2 = 4$.

(a) Determine a.

\textbf{Solution:} Clearly,
\[
\sigma_Y^2 = a^2 \sigma_X^2 = a^2.
\]

Therefore, $a = 2$.

(b) Assume that $Y = 0$ is observed. Find the Maximum Likelihood estimate of b for the value of a in part (a).

\textbf{Solution:} Clearly, $Y \sim \mathcal{N}(a\mu_X + b, \sigma_Y^2) = \mathcal{N}(b, 4)$ (can be also computed using the scaling rule for pdfs). For b:
\[
L(b) = f_Y(0) = \frac{1}{\sqrt{8\pi}}e^{-\frac{(0-b)^2}{8}},
\]

which is maximized for $\hat{b}_{\text{ML}} = 0$.

11. [7+7+7 points] Let $X \sim \mathcal{N}(\mu, \sigma^2)$.

(a) Define the positive random variable $Y = e^X$. Y is said to have a lognormal distribution with parameters μ, σ^2. Find $f_Y(y), y > 0$.

Solution:
\[F_Y(y) = P(e^X \leq y) = P(X \leq \ln y) = F_X(\ln y). \]

By differentiating we obtain:
\[f_Y(y) = f_X(\ln y)(\ln y)' = \frac{1}{y\sqrt{2\pi\sigma^2}} e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}. \]

(b) Suppose that $Z = X + 2W$, where $W \sim \mathcal{N}(0, 1)$ is independent of X. Compute the unconstrained minimum MSE estimator $E[Z|X]$. Your answer should be a function of X.

Solution: X, W are jointly Gaussian since they are independent. For the same reason, Z, X are jointly Gaussian. Therefore,
\[E[Z|X] = \mu_Z + \frac{\text{Cov}(X, Z)}{\sigma_X^2}(X - \mu_X) = \mu + \frac{\sigma^2}{\sigma_X^2}(X - \mu) = X. \]

Alternative Solution:
where the independence of X, W has been used.

(c) For Z in the part (b) compute $P(Z \geq \mu)$.

Solution: $Z \sim \mathcal{N}(\mu, \sigma^2 + 4)$. Therefore,
\[P(Z \geq \mu) = P\left(\frac{Z - \mu}{\sigma + 4} \geq \frac{\mu - \mu}{\sqrt{\sigma^2 + 4}}\right) = P(\tilde{Z} \geq 0) = Q(0) = \frac{1}{2}, \]
where $\tilde{Z} \sim \mathcal{N}(0, 1)$.