ECE 313: Hour Exam I

Wednesday, October 9, 2019
8:45 p.m. - 10:00 p.m.

1. [20 points] The two parts of this problem are unrelated.
(a) Consider a standard deck of cards (i.e., 52 cards in total, 4 suits, and 13 cards of each suit). What is the probability of getting at least one card of each suit if you select 5 cards at random?
Solution: In this case, I need to get a club, a diamond, a heart and a space, but the fifth card can be of any suit. There are four options to choose the repeated suit. Once the suits are fixed, I have 13 options for the card number of each of the suits that is not repeated, and $\binom{13}{2}$ for the suit that appears twice. The total number of combinations in this case is $\binom{52}{5}$, and all outcomes have the same probability as before. Hence, the sought probability is:

$$
\frac{4 \times 13 \times 13 \times 13 \times\binom{ 13}{2}}{\binom{52}{5}}
$$

(b) Consider events A, B and C, with positive probability. If $P(A)=0.5, P(A \cup C)=0.8$ and $P\left(A^{c} B^{c} C^{c}\right)=0.2$, what is $P\left(A^{c} B C^{c}\right)$? Hint: A Karnaugh map may help.
Solution: Since $P(A \cup C)=0.8$ and $P(A)=0.5$, we have that $P\left(A^{c} C\right)=0.3$. Hence, $P\left(A^{c} B C^{c}\right)+P\left(A^{c} B^{c} C^{c}\right)=0.2$, and since $P\left(A^{c} B^{c} C^{c}\right)=0.2$, we have $P\left(A^{c} B C^{c}\right)=0$.
2. [20 points] You enter a chess tournament where your probability of winning a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of the players (call them type 2), and 0.5 against the remaining quarter of the players (call them type 3).
(a) You play a game against a randomly chosen opponent. What is the probability of winning?
Solution: Let A_{i} be the event of playing with an opponent of type $i \in\{1,2,3\}$. We have

$$
\mathbb{P}\left[A_{1}\right]=0.5, \quad \mathbb{P}\left[A_{2}\right]=0.25, \quad \mathbb{P}\left[A_{3}\right]=0.25
$$

Also, let WIN be the event of winning. We have

$$
\mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]=0.3, \quad \mathbb{P}\left[\mathrm{WIN} \mid A_{2}\right]=0.4, \quad \mathbb{P}\left[\mathrm{WIN} \mid A_{3}\right]=0.5
$$

Thus, by the total probability theorem, the probability of winning is

$$
\begin{aligned}
\mathbb{P}[\mathrm{WIN}] & =\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]+\mathbb{P}\left[A_{2}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{2}\right]+\mathbb{P}\left[A_{3}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{3}\right] \\
& =0.5 \times 0.3+0.25 \times 0.4+0.25 \times 0.5 \\
& =0.375
\end{aligned}
$$

The answer is 0.375 .
(b) You play a game against a randomly chosen opponent. If you win, what is the probability of having played against an opponent of type 1?
Solution: By the Bayes formula, we have

$$
\mathbb{P}\left[A_{1} \mid \mathrm{WIN}\right]=\frac{\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[\mathrm{WIN} \mid A_{1}\right]}{\mathbb{P}[\mathrm{WIN}]}=\frac{0.5 \times 0.3}{0.375}=\frac{2}{5}
$$

The answer is $2 / 5$.
3. [20 points] Prof. Hajek flips a fair coin repeatedly, keeping track of how many heads and how many tails he has seen, until he gets either two heads in a row or two tails in a row, at which point he stops flipping.
(a) What is the mean number of flips until Prof. Hajek stops?

Solution: Let L be the random variable denoting the number of flips until stopping. Prof. Hajek needs at least 2 flips, and the first 2 flips can either be in $\{H H, T T\}$, or $\{H T, T H\}$. In the first set, he would stop, whereas in the second set he would be like starting over after one flip. Hence

$$
E[L]=(1 / 2) \cdot 2+(1 / 2) \cdot(E[L]+1) .
$$

Solving this we get $E[L]=3$.
(b) What is the probability that Prof. Hajek gets two heads in a row (at which point he stops flipping the coin) but he also sees a second tail before he sees a second head? (e.g., THTHTHH, since the second T happens before the second H, and he stops flipping the coin with a HH).
Solution: The sequences of flips satisfying the given condition can only be one of:
$\{$ THTHH, THTHTHH, THTHTHTHH, ...\}.
Hence the asked probability is $(1 / 2)^{5}+(1 / 2)^{7}+(1 / 2)^{9}+\ldots=(1 / 2)^{5} \cdot \frac{1}{1-(1 / 2)^{2}}=\frac{1}{24}$.
4. [20 points] The two parts of this problem are unrelated.
(a) Suppose a fair die is repeatedly rolled, and let L be the number of trials conducted until the number six shows. Using the Markov inequality, compute the minimum integer, n, such that $\mathbb{P}[L \geq n] \leq 0.3$.
Solution: The random variable L has the geometric distribution with parameter $p=$ $1 / 6$. Its mean and variance is

$$
\mathbb{E}[L]=\frac{1}{p}, \quad \operatorname{Var}(L)=\frac{1-p}{p^{2}} .
$$

By applying the Markov inequality, we have

$$
\mathbb{P}[L \geq n] \leq \frac{1}{n} \frac{1}{p}=\frac{6}{n}
$$

Therefore, to satisfy $\mathbb{P}[L \geq n] \leq 0.3, n$ needs to be larger than or equal to 20 . The answer is 20 .
(b) Let X_{1}, X_{2} be two independent discrete random variables having the same probability mass function given by:

$$
p_{X_{1}}(x)=p_{X_{2}}(x)=\left\{\begin{array}{cl}
\frac{\theta}{2}, & x=1 \\
\frac{1-\theta}{2}, & x=2, \\
\frac{1}{2}, & x=3
\end{array}, \text { where } \quad 0 \leq \theta \leq 1\right.
$$

Let $Y=X_{1} \cdot X_{2}$ and suppose that $Y=2$ is observed. Compute the Maximum Likelihood estimate $\hat{\theta}_{M L}$ of θ.
Solution: The event $\{Y=2\}$ occurs when $\left(X_{1}, X_{2}\right) \in\{(1,2),(2,1)\}$. Therefore,

$$
L(\theta)=p_{Y}(2 ; \theta)=\frac{\theta}{2} \cdot \frac{1-\theta}{2}+\frac{1-\theta}{2} \cdot \frac{\theta}{2}=\frac{\theta(1-\theta)}{2} .
$$

Differentiating with respect to θ, setting the derivative to zero and solving for θ results in $\hat{\theta}_{M L}=\frac{1}{2}$.
5. [20 points] Consider a binary hypothesis testing problem with the following likelihood matrix (e.g., under H_{1}, the probability of $X=1$ is $1 / 8$):

X	1	2	3
H_{1}	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{2}$
H_{0}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$

(a) Specify the ML decision rule given the observation X by breaking ties in favor of H_{1}. What is $p_{\text {miss }}$?
Solution:

$$
\begin{array}{r|ccc}
X & 1 & 2 & 3 \\
\hline H_{1} & \frac{1}{8} & \frac{3}{8} & \frac{1}{2} \\
H_{0} & \underline{1} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & \\
p_{\text {miss }}= & P\left(H_{0} \mid H_{1}\right)=\frac{1}{8} .
\end{array}
$$

(b) How many decision rules are there in which we always pick H_{1} for $X=3$?

Solution: $2^{2}=4$ decision rules.
(c) Suppose that instead of an observation of X we are given the sum of two independent realizations of X (under the same hypothesis). If the sum of these two realizations is 2, which hypothesis will the ML decision rule declare as the true hypothesis?
Solution: Sum of two independent realizations of X equal to 2 can only happen if the realized values are $(1,1)$. This pair has probability $\frac{1}{8^{2}}$ under H_{1} and probability $\frac{1}{4^{2}}$ under H_{0}. Thus, the ML decision rule will declare H_{0} as the true hypothesis.

