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1. [20 points] The two parts of this problem are unrelated.

(a) Consider a standard deck of cards (i.e., 52 cards in total, 4 suits, and 13 cards of each
suit). What is the probability of getting at least one card of each suit if you select 5
cards at random?

Solution: In this case, I need to get a club, a diamond, a heart and a space, but the
fifth card can be of any suit. There are four options to choose the repeated suit. Once
the suits are fixed, I have 13 options for the card number of each of the suits that is not
repeated, and

(
13
2

)
for the suit that appears twice. The total number of combinations

in this case is
(
52
5

)
, and all outcomes have the same probability as before. Hence, the

sought probability is:
4× 13× 13× 13×

(
13
2

)(
52
5

) .

(b) Consider events A , B and C, with positive probability. If P (A) = 0.5, P (A ∪ C) = 0.8
and P (AcBcCc) = 0.2, what is P (AcBCc)? Hint: A Karnaugh map may help.

Solution: Since P (A ∪ C) = 0.8 and P (A) = 0.5, we have that P (AcC) = 0.3. Hence,
P (AcBCc) + P (AcBcCc) = 0.2, and since P (AcBcCc) = 0.2, we have P (AcBCc) = 0.



2. [20 points] You enter a chess tournament where your probability of winning a game is 0.3
against half the players (call them type 1), 0.4 against a quarter of the players (call them
type 2), and 0.5 against the remaining quarter of the players (call them type 3).

(a) You play a game against a randomly chosen opponent. What is the probability of
winning?

Solution: Let Ai be the event of playing with an opponent of type i ∈ {1, 2, 3}. We
have

P[A1] = 0.5, P[A2] = 0.25, P[A3] = 0.25.

Also, let WIN be the event of winning. We have

P[WIN|A1] = 0.3, P[WIN|A2] = 0.4, P[WIN|A3] = 0.5.

Thus, by the total probability theorem, the probability of winning is

P[WIN] =P[A1]P[WIN|A1] + P[A2]P[WIN|A2] + P[A3]P[WIN|A3]

=0.5× 0.3 + 0.25× 0.4 + 0.25× 0.5

=0.375.

The answer is 0.375.

(b) You play a game against a randomly chosen opponent. If you win, what is the probability
of having played against an opponent of type 1?

Solution: By the Bayes formula, we have

P[A1|WIN] =
P[A1]P[WIN|A1]

P[WIN]
=

0.5× 0.3

0.375
=

2

5
.

The answer is 2/5.

2



3. [20 points] Prof. Hajek flips a fair coin repeatedly, keeping track of how many heads and
how many tails he has seen, until he gets either two heads in a row or two tails in a row, at
which point he stops flipping.

(a) What is the mean number of flips until Prof. Hajek stops?

Solution: Let L be the random variable denoting the number of flips until stopping.
Prof. Hajek needs at least 2 flips, and the first 2 flips can either be in {HH,TT}, or
{HT, TH}. In the first set, he would stop, whereas in the second set he would be like
starting over after one flip. Hence

E[L] = (1/2) · 2 + (1/2) · (E[L] + 1).

Solving this we get E[L] = 3.

(b) What is the probability that Prof. Hajek gets two heads in a row (at which point he
stops flipping the coin) but he also sees a second tail before he sees a second head? (e.g.,
THTHTHH, since the second T happens before the second H, and he stops flipping the
coin with a HH).

Solution: The sequences of flips satisfying the given condition can only be one of:

{THTHH, THTHTHH, THTHTHTHH, . . .}.

Hence the asked probability is (1/2)5 + (1/2)7 + (1/2)9 + . . . = (1/2)5 · 1
1−(1/2)2

= 1
24 .
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4. [20 points] The two parts of this problem are unrelated.

(a) Suppose a fair die is repeatedly rolled, and let L be the number of trials conducted until
the number six shows. Using the Markov inequality, compute the minimum integer, n,
such that P[L ≥ n] ≤ 0.3.

Solution: The random variable L has the geometric distribution with parameter p =
1/6. Its mean and variance is

E[L] =
1

p
, Var(L) =

1− p
p2

.

By applying the Markov inequality, we have

P[L ≥ n] ≤ 1

n

1

p
=

6

n
.

Therefore, to satisfy P[L ≥ n] ≤ 0.3, n needs to be larger than or equal to 20. The
answer is 20.

(b) Let X1, X2 be two independent discrete random variables having the same probability
mass function given by:

pX1(x) = pX2(x) =



θ
2 , x = 1

1−θ
2 , x = 2

1
2 , x = 3

, where 0 ≤ θ ≤ 1.

Let Y = X1 ·X2 and suppose that Y = 2 is observed. Compute the Maximum Likelihood
estimate θ̂ML of θ.

Solution: The event {Y = 2} occurs when (X1, X2) ∈ {(1, 2), (2, 1)}. Therefore,

L(θ) = pY (2; θ) =
θ

2
· 1− θ

2
+

1− θ
2
· θ

2
=
θ(1− θ)

2
.

Differentiating with respect to θ, setting the derivative to zero and solving for θ results
in θ̂ML = 1

2 .
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5. [20 points] Consider a binary hypothesis testing problem with the following likelihood matrix
(e.g., under H1, the probability of X = 1 is 1/8):

X 1 2 3

H1
1
8

3
8

1
2

H0
1
4

1
4

1
2

(a) Specify the ML decision rule given the observation X by breaking ties in favor of H1.
What is pmiss?

Solution:

X 1 2 3

H1
1
8

3
8

1
2

H0
1
4

1
4

1
2

pmiss = P (H0|H1) =
1

8
.

(b) How many decision rules are there in which we always pick H1 for X = 3?

Solution: 22 = 4 decision rules.

(c) Suppose that instead of an observation of X we are given the sum of two independent
realizations of X (under the same hypothesis). If the sum of these two realizations is 2,
which hypothesis will the ML decision rule declare as the true hypothesis?

Solution: Sum of two independent realizations of X equal to 2 can only happen if the
realized values are (1, 1). This pair has probability 1

82
under H1 and probability 1

42
under

H0. Thus, the ML decision rule will declare H0 as the true hypothesis.
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