ECE 313: Hour Exam II

Wednesday, November 13, 2019
8:45 p.m. - 10:00 p.m.

1. $[20(7+8+5)$ points $]$ Consider a continuous random variable X with the following pdf:

$$
f_{X}(u)=\left\{\begin{array}{cc}
K \lambda e^{-\lambda u}, & 0 \leq u \leq a \\
0, & \text { otherwise }
\end{array}\right.
$$

for some positive constants K, a, and λ.
(a) What must K, a, and λ satisfy for f_{X} to be a valid pdf?

Solution: For f_{X} to be a valid pdf, we must have:

$$
\begin{aligned}
1 & =\int_{0}^{a} K \lambda e^{-\lambda u} d u \\
& =-\left.K e^{-\lambda u}\right|_{0} ^{a} \\
& =K-K e^{-\lambda a} \\
& =K\left(1-e^{-\lambda a}\right)
\end{aligned}
$$

Alternatively, one can directly use $\int_{0}^{a} \lambda e^{-\lambda u} d u=F_{Y}(a)=1-e^{-\lambda a}$, with $Y \sim \operatorname{Exp}(\lambda)$. Therefore, we have

$$
a=-\frac{1}{\lambda} \ln (1-1 / K)
$$

For $K=1, a=\infty$, and $X \sim \operatorname{Exp}(\lambda)$. For $K=2, a=-\frac{1}{\lambda} \ln (1 / 2)$.
(b) What is the probability of $X>a / 2$ if $X>a / 4$? In other words, compute $P\left\{\left.X>\frac{a}{2} \right\rvert\, X>\right.$ $\left.\frac{a}{4}\right\}$. Leave your answer in terms of K and a.
Solution: First note that $F_{X}(c)=0$ for $c<0, F_{X}(c)=1$ for $c>a$, and for $0 \leq c \leq a$:

$$
\begin{aligned}
F_{X}(c) & =\int_{0}^{c} K \lambda e^{-\lambda u} d u \\
& =K\left(1-e^{-\lambda c}\right)
\end{aligned}
$$

$$
\begin{aligned}
P\left\{\left.X>\frac{a}{2} \right\rvert\, X>\frac{a}{4}\right\} & =\frac{P\left\{X>\frac{a}{2}, X>\frac{a}{4}\right\}}{P\left\{X>\frac{a}{4}\right\}} \\
& =\frac{P\left\{X>\frac{a}{2}\right\}}{P\left\{X>\frac{a}{4}\right\}} \\
& =\frac{1-F_{X}\left(\frac{a}{2}\right)}{1-F_{X}\left(\frac{a}{4}\right)} \\
& =\frac{1-K\left(1-e^{-\lambda a / 2}\right)}{1-K\left(1-e^{-\lambda a / 4}\right)}
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
\frac{P\left\{X>\frac{a}{2}\right\}}{P\left\{X>\frac{a}{4}\right\}} & =\frac{\int_{a / 2}^{a} K \lambda e^{-\lambda u} d u}{\int_{a / 4}^{a} K \lambda e^{-\lambda u} d u} \\
& =\frac{e^{-\lambda a / 2}-e^{-\lambda a}}{e^{-\lambda a / 4}-e^{-\lambda a}}
\end{aligned}
$$

(c) Compute $P\left\{X=\frac{a}{2}\right\}$ and $P\left\{X^{2}+a X>0\right\}$. Leave your answer in terms of K and a.

Solution: $P\left\{X=\frac{a}{2}\right\}=0$, since X is a continuous random variable. $P\left\{X^{2}+a X>\right.$ $0\}=1$, since $X>0$ and $a>0$.
2. [20 $(7+13)$ points] Corey is doing research on traffic flow in which he assumes that cars pass by the Grainger library crossing on Springfield Ave during the lunch hours according to a Poisson process with rate λ cars per minute. Based on that assumption, solve the following.
(a) Find the average waiting time to see the next passing car? Justify your answer.

Solution: The waiting time U between passing cars has exponential distribution: $U \sim$ $\operatorname{Exponential}(\lambda)$. Hence $E[U]=1 / \lambda$ (minute).
(b) Find the probability that there are 3 passing cars between 12:01pm and 12:03pm given that there are 2 passing cars between $12: 00 \mathrm{pm}$ and $12: 02 \mathrm{pm}$.
Solution: Let A be the event that there are 2 passing cars between 12:00pm and $12: 02 \mathrm{pm}$, and B be the event that there are 3 passing cars between 12:01pm and 12:03pm. Note that these two intervals are not disjoint, so we need to break these them into disjoint intervals to get independent Poisson random variables. Let $E_{i, j, k}$ be the event that there are:
i. i passing cars from $12: 00 \mathrm{pm}$ to $12: 01 \mathrm{pm}$,
ii. j passing cars from $12: 01 \mathrm{pm}$ to $12: 02 \mathrm{pm}$,
iii. k passing cars from $12: 02 \mathrm{pm}$ to $12: 03 \mathrm{pm}$.

Then $P(A B)$ is the sum of probabilities of the following of disjoint events as

$$
P(A B)=P\left(E_{2,0,3}\right)+P\left(E_{1,1,2}\right)+P\left(E_{0,2,1}\right)
$$

Using the Poisson process assumption, we have

$$
P\left(E_{i, j, k}\right)=\frac{e^{-\lambda} \lambda^{i}}{i!} \frac{e^{-\lambda} \lambda^{j}}{j!} \frac{e^{-\lambda} \lambda^{k}}{k!}=\frac{e^{-3 \lambda} \lambda^{i+j+k}}{i!j!k!} .
$$

Hence,

$$
P(A B)=e^{-3 \lambda}\left(\frac{\lambda^{5}}{2!0!3!}+\frac{\lambda^{4}}{1!1!2!}+\frac{\lambda^{3}}{0!2!1!}\right) .
$$

Finally, the asked conditional probability is

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A B)}{P(A)} \\
& =e^{-3 \lambda}\left(\frac{\lambda^{5}}{2!0!3!}+\frac{\lambda^{4}}{1!1!2!}+\frac{\lambda^{3}}{0!2!1!}\right) \frac{2!}{e^{-2 \lambda}(2 \lambda)^{2}} \\
& =e^{-\lambda}\left(\frac{\lambda^{3}}{24}+\frac{\lambda^{2}}{4}+\frac{\lambda}{4}\right) .
\end{aligned}
$$

3. [10 points] Let $X \sim N(3,16)$. Clearly describe how can we use the Q table to find $P(1 \leq$ $X<5)$. Solution: Again using standardized version of X, we have

$$
\begin{aligned}
P(1 \leq X<5) & =P\left(\frac{1-3}{4} \leq \frac{X-3}{4}<\frac{5-3}{4}\right) \\
& =P(-0.5 \leq Z<0.5) \\
& =1-P(Z<-0.5)-P(Z \geq 0.5) \\
& =1-2 \cdot Q(0.5) .
\end{aligned}
$$

4. [10 points] Assume that if hypothesis $0\left(H_{0}\right)$ is true, then the random variable X has the pdf $f_{0}(x)$, and if hypothesis $1\left(H_{1}\right)$ is true, then the random variable X has the pdf $f_{1}(x)$, whose graphs are given in the following figure. Find the ML decision rule for the hypothesis test, and the corresponding $p_{\text {miss }}$.

Solution: Intersection of graphs of f_{0} and f_{1} is $x=3 / 2$ (see the picture below).

Therefore, if we observe $X=x$, then the ML rule is

$$
\begin{cases}f_{1}(x) \geq f_{0}(x) & \text { if } x \geq 3 / 2 \\ f_{1}(x)<f_{0}(x) & \text { if } x<3 / 2\end{cases}
$$

Therefore, the ML decision rule is

$$
\begin{cases}\text { Declare } H_{1} & \text { if } x \geq 3 / 2 \\ \text { Declare } H_{0} & \text { if } x<3 / 2\end{cases}
$$

We have $p_{\text {miss }}=\mathbb{P}\left[\right.$ Declar H_{0} true $\left.\mid H_{1}\right]=\int_{-\infty}^{3 / 2} f_{1}(x) d x=\frac{1}{8}$.
5. [20 points] Prof. Hajek is driving from Champaign to Chicago at a constant speed X miles per hour, which is a random variable uniformly distributed in the interval [70, 80]. The distance between Champaign and Chicago is 140 miles. Let random variable Y be the time duration (in hours) of the trip, i.e., $Y=g(X)=\frac{140}{X}$. Find the pdf of Y.
Solution: We first find the CDF, and then we derivate it to find the pdf. First note that since $X \in[70,80], Y \in[14 / 8,2]$. Therefore, $F_{Y}(y)=0$ for $y<14 / 8$, and $F_{Y}(y)=1$ for $y>2$. For $14 / 8 \leq y \leq 2$, we have

$$
F_{Y}(y)=\mathbb{P}[Y \leq y]=\mathbb{P}[140 / y \leq X]=\left(80-\frac{140}{y}\right) \frac{1}{10}=8-\frac{14}{y},
$$

where we have used the fact that $X \sim U[70,80]$.
Finally, taking the derivative, we get $f_{Y}(y)=\frac{14}{y^{2}}$, for $y \in[14 / 8,2]$, and 0 otherwise.
6. [20 points] Let X, Y be two independent exponential random variables with $\lambda=1$. Consider the square \mathcal{S} with corner points $(0,0),(0, r),(r, 0),(r, r)$. Find r such that $P((X, Y) \in \mathcal{S})=$ $\left(1-e^{-2}\right)^{2}$.

Solution:

$$
\begin{aligned}
P((X, Y) \in \mathcal{S}) & =P(0 \leq X \leq r, 0 \leq Y \leq r)=P(0 \leq X \leq r) P(0 \leq Y \leq r) \\
& =F_{X}(r) F_{Y}(r)=\left(1-e^{-r}\right)^{2} .
\end{aligned}
$$

Here, the independence and the nonnegativity of X, Y have been employed. By matching the expression with the desired probability $\left(1-e^{-2}\right)^{2}$ we conclude that

$$
r=2 .
$$

