ECE 313: Final Exam
Monday, December 12, 2016
7 p.m. — 10 p.m.
Aa-Fh in room ECEB 1013
Fi-Zz in room ECEB 1002

1. [14 points] A drawer contains 4 black, 6 red, and 8 yellow socks. Two socks are selected at random from the drawer.

(a) What is the probability the two socks are of the same color?

Solution: Let B, R, and Y denote the sets of black, red, and yellow socks, with cardinalities 4, 6, and 8, respectively. A suitable choice of sample space for this experiment is

$$\Omega = \{S : |S| = 2 \text{ and } S \subseteq B \cup R \cup Y\},$$

where S represents the set of two socks selected. The cardinality of Ω is

$$|\Omega| = \binom{4 + 6 + 8}{2} = \binom{18}{2} = 153.$$

Let F be the event $F = \{S : |S| = 2 \text{ and } S \subseteq B \text{ or } S \subseteq R \text{ or } S \subseteq Y\}$. Then,

$$|F| = \binom{4}{2} + \binom{6}{2} + \binom{8}{2} = 6 + 15 + 28 = 49.$$

Thus,

$$P(F) = \frac{49}{153}.$$

(b) What is the conditional probability both socks are yellow given they are of the same color?

Solution: Let $G = \{S : |S| = 2 \text{ and } S \subseteq Y\}$. Note that $G \subseteq F$ and $|G| = \binom{8}{2} = 28$. Therefore,

$$P(G|F) = \frac{P(GF)}{P(F)} = \frac{P(G)}{P(F)} = \frac{28}{49} = \frac{4}{7}. $$

2. [14 points] The two parts of this problem are unrelated.

(a) Suppose A, B, and C are events for a probability experiment such that B and C are mutually independent, $P(A) = P(B^c) = P(C) = 0.5$, $P(AB) = P(AC) = 0.3$, and $P(ABC) = 0.1$. Fill in the probabilities of all events in a Karnaugh map. Show your work AND use the map on the right to depict your final answer.

Solution: Start by filling in $P(ABC) = 0.1$. Then use $P(AC) = 0.3$ to get $P(AB^cC) = P(AC) - P(ABC) = 0.3 - 0.1 = 0.2$. Similarly, use $P(AB) = 0.3$ to
get \(P(ABC^c) = P(AB) - P(ABC) = 0.3 - 0.1 = 0.2 \). The independence of \(B \) and \(C \) and the given probabilities of \(B \) and \(C \) yield \(P(BC) = P(B)P(C) = 0.25 \), from which we conclude as before that \(P(A^cBC^c) = P(BC) - P(ABC) = 0.25 - 0.1 = 0.15 \). Use \(P(A) = 0.5 \) to get \(P(AB^cC^c) = 0 \); use \(P(B) = 0.5 \) to get \(P(A^cBC^c) = 0.05 \); use \(P(C) = 0.5 \) to get \(PA^cB^cC^c) = 0.05 \). Finally, all probabilities add to one;

\[
P(A^cB^cC^c) = 0.25.
\]

(b) Let \(A, B \) be two disjoint events on a sample space \(\Omega \). Find a formula for the probability of \(A \) occurring before \(B \) in an infinite sequence of independent trials.

Solution: \(A \) and \(B \) occur with probabilities \(P(A) \) and \(P(B) \), respectively. Consider the first trial:

First Trial: Either \(A \) occurs or \(B \) occurs or neither \(A \) nor \(B \) occurs.
- If \(A \) occurs, then the probability that \(A \) occurs before \(B \) is 1.
- If \(B \) occurs, then the probability that \(A \) occurs before \(B \) is 0.
- If neither \(A \) nor \(B \) occurs, then the process starts over.

Let \(s \) be the probability that neither \(A \) nor \(B \) occurs in a given independent trial. Then \(s = 1 - P(A) - P(B) \) due to \(A \cap B = \emptyset \). Therefore,

\[
P(A \text{ before } B) = P(A) + sP(A) + s^2P(A) + \cdots + s^nP(A) + \cdots = P(A) \sum_{n=0}^{\infty} s^n = P(A) \frac{1}{1-s} = \frac{P(A)}{P(A) + P(B)}.
\]

Alternatively: Let \(s \) be the probability that neither \(A \) nor \(B \) occurs in a given independent trial. If neither \(A \) nor \(B \) occurs on the first trial, then the process starts over. So \(P(A \text{ before } B) = P(A) + sP(A \text{ before } B) \). Solving this equation for \(P(A \text{ before } B) \) yields \(P(A \text{ before } B) = \frac{P(A)}{1-s} = \frac{P(A)}{P(A) + P(B)} \).

3. **[20 points]** Suppose two teams, Cubs and Indians, play a best-of-seven series of games. Assume that games are independent, that ties are not possible in each game, and that Cubs wins a given game with probability \(p \in (0, 1) \). The series ends as soon as one of the teams has won four games. Let \(G \) denote the total number of games played.

(a) Obtain the probability that Cubs win exactly 2 of the first 4 games.

Solution: The number of games that Cubs win out of the first 4 games is \(\text{Binomial}(4, p) \), hence

\[
P\{\text{Cubs win exactly 2 of the first 4 games}\} = \binom{4}{2}p^2(1-p)^2
\]
(b) What is the expected number of games that Cubs will win out of the first 4 games?
\textbf{Solution:} From part (a), the number of games that Cubs win out of the first 4 games is $\text{Binomial}(4, p)$, hence

$$E[\text{number of games that Cubs will win out of the first 4 games}] = 4p$$

(c) Obtain the probability $P\{G = 6, \text{Cubs win the series}\}$.
\textbf{Solution:} Let $W_C = \{\text{Cubs win the series}\}$. For event $\{G = 6, W_C\}$ to occur we need Cubs to win 3 out of the first 5 games, and Cubs must win the 6th game. The number of games that Cubs win out of the first 5 games is $\text{Binomial}(5, p)$, and p is the probability that Cubs win game 6 if it is reached. Hence,

$$P\{G = 6, W_C\} = \left(\binom{5}{3} p^3 (1-p)^2\right) p = \binom{5}{3} p^4 (1-p)^2$$

(d) Obtain $p_G(n)$, the pmf of G, for all n.
\textbf{Solution:} Clearly $G \in \{4, 5, 6, 7\}$. Using total probability, and following reasoning similar to part (b), for $n \in \{4, 5, 6, 7\}$:

$$p_G(n) = P\{G = n\} = P\{G = n, \text{Cubs win}\} + P\{G = n, \text{Cubs do not win}\}$$

$$= \left(\binom{n-1}{3} p^3 (1-p)^{n-1-3}\right) p + \left(\binom{n-1}{3} (1-p)^3 p^{n-1-3}\right) (1-p)$$

$$= \binom{n-1}{3} p^4 (1-p)^{n-4} + \binom{n-1}{3} (1-p)^4 p^{n-4}$$

4. [14 points] Suppose S and T represent the lifetimes of two phones, the lifetimes are independent, and each has the exponential distribution with parameter $\lambda = 1$.

(a) Obtain $P\{|S - T| \leq 1\}$.
\textbf{Solution:} $P\{|S - T| \leq 1\} = \int \int_R e^{-u} e^{-v} dudv$, where R is the infinite strip in the positive quadrant defined by $R = \{u \geq 0, v \geq 0, |u - v| \leq 1\}$. The complement of R in the positive quadrant is the union of the region $S_1 = \{u \geq 1, 0 \leq v \leq u - 1\}$ below R, and a similar region, S_2, above R. By symmetry, $P\{(S, T) \in S_1\} = P\{(S, T) \in S_2\}$ so that $P\{|S - T| \leq 1\} = 1 - 2P\{(S, T) \in S_1\}$. Since

$$P\{(S, T) \in S_1\} = \int_0^\infty \int_{v+1}^\infty e^{-u} e^{-v} dudv$$

$$= \int_0^\infty e^{-v} \int_{v+1}^\infty e^{-u} dudv$$

$$= \int_0^\infty e^{-2v} dv = \frac{e^{-1}}{2},$$

it follows that $P\{|S - T| \leq 1\} = 1 - e^{-1}$.

\text{ALTERNATIVELY,} $|S - T|$ is the remaining lifetime of the other phone, after one phone fails. By the memoryless property of the exponential distribution, it follows that $|S - T|$ has the same distribution as S or T. So $P\{|S - T| \leq 1\} = 1 - e^{-1}$.

3
(b) Let \(Z = (S - 1)^2 \). Obtain \(f_Z(c) \), the pdf of \(Z \), for all \(c \).

Solution: Clearly \(P\{Z \geq 0\} = 1 \). For \(c \geq 0 \), \(F_Z(c) = P\{(S - 1)^2 \leq c\} = P\{-\sqrt{c} \leq S - 1 \leq \sqrt{c}\} = P\{1 - \sqrt{c} \leq S \leq 1 + \sqrt{c}\} \). So

\[
F_Z(c) = \begin{cases}
0 & c < 0 \\
\int_{\sqrt{c}}^{1+\sqrt{c}} e^{-u} du = e^{-1+\sqrt{c}} - e^{-1-\sqrt{c}} & 0 \leq c < 1 \\
\int_0^{1+\sqrt{c}} e^{-u} du = 1 - e^{-1-\sqrt{c}} & c \geq 1
\end{cases}
\]

Differentiating with respect to \(c \) yields

\[
f_Z(c) = \begin{cases}
0 & c < 0 \\
\frac{e^{-1+\sqrt{c}} - e^{-1-\sqrt{c}}}{2\sqrt{c}} & 0 \leq c < 1 \\
\frac{e^{-1-\sqrt{c}}}{2\sqrt{c}} & c \geq 1
\end{cases}
\]

5. **[20 points]** Assume power surges occur as a Poisson process with rate 3 per hour. These events cause damage to a certain system (say, a computer).

 (a) Obtain \(F_{T_3}(t) \), the CDF of the time when the third power surge occurs, for all \(t \geq 0 \), measured for some reference time 0. NOTE: Give a simple answer that does not involve an integral or the sum of an infinite series. (**Hint:** It might be easier to first obtain the complementary CDF.)

 Solution: The third surge takes place by time \(t \) if and only if at least three surges occur by time \(t \). That is, \(T_3 \leq t \) if and only if \(N_t \geq 3 \). Thus,

 \[P\{T_3 \leq t\} = P\{N_t \geq 3\} = 1 - P\{N_t \leq 2\} = 1 - (1 + \lambda t + \frac{(\lambda t)^2}{2})e^{-\lambda t}, \text{ where } \lambda = \frac{1}{6}. \]

 (b) Assume that a single power surge occurring in a certain 10 minute period will cause the system to crash. What is the probability that the system will crash in that period?

 Solution: The rate of power surges is \(\lambda = 3 \) per hour. The duration of the service period, \(t_o \), is 10 minutes, or \(t_o = 1/6 \) hour, and \(\lambda t_o = 1/2 \). Let the number of power surges in 10 minutes be \(N \).

 \[P\{N \geq 1\} = 1 - P\{N = 0\} = 1 - e^{-1/2}. \]

(c) Obtain

\(P\{\text{exactly 1 power surge during 1-3pm AND exactly 2 power surges during 2-6pm}\} \).

Solution: The two time intervals overlap, so we need to look at the time intervals \(I_1 = [1, 2], I_2 = (2, 3], \) and \(I_3 = (3, 6] \). We want to find the probability of one power surge during \(I_1 \cup I_2 \) and two power surges during \(I_2 \cup I_3 \). There are two mutually exclusive ways for this to happen:

- (one surge in \(I_1 \), no surges in \(I_2 \), two surges in \(I_3 \))
- (no surge in \(I_1 \), one surge in \(I_2 \), one surge in \(I_3 \)).
These two events have probabilities \((\lambda e^{-\lambda}) (e^{-\lambda}) \left(\frac{(3\lambda)^2 e^{-3\lambda}}{2} \right)\) and \((e^{-\lambda}) (\lambda e^{-\lambda})(3\lambda e^{-3\lambda})\), respectively. Adding these gives the total probability, \[\frac{2\lambda^3}{9} + 3\lambda^2 \] \(e^{-5\lambda} = (148.5) e^{-15}. \]

6. [22 points] Let \((X, Y)\) be uniformly distributed over the triangular region with vertices \((0, 0)\), \((1/2, 2)\), and \((1, 0)\).

(a) Obtain \(f_{X,Y}(u, v)\), the joint pdf of \(X\) and \(Y\), for all \(u\) and \(v\).

Solution: The triangle has height 2 and base one, so it has unit area, so the joint pdf is one inside the triangle and zero outside. That is,

\[
f_{X,Y}(u, v) = \begin{cases} 1 & (u, v) \in T \\ 0 & \text{otherwise} \end{cases}
\]

where \(T = \{(u, v); 0 \leq u \leq 1, 0 \leq v \leq \min(4u, 4 - 4u)\}\), or equivalently, \(T = \{(u, v) : 0 \leq v \leq 2, \frac{v}{4} \leq u \leq 1 - \frac{v}{4}\}\).

(b) Obtain \(f_Y(v)\), the marginal pdf of \(Y\), for all \(v\).

Solution: For \(v \geq 2\) or \(v < 0\), \(f_Y(v) = 0\). For \(0 \leq v < 2\),

\[
f_Y(v) = \int_{-\infty}^{\infty} f_{X,Y}(u, v) du = \int_{\frac{v}{4}}^{1-\frac{v}{2}} 1 du
\]

\[
= 1 - \frac{v}{2}
\]

(c) Obtain \(f_{X|Y}(u|v)\), the conditional pdf of \(X\) given \(Y\), for all \(u\) and \(v\).

Solution: For \(0 \leq v < 2\),

\[
f_{X|Y}(u|v) = \frac{f_{X,Y}(u, v)}{f_Y(v)} = \begin{cases} \frac{2}{2-v} & \frac{v}{4} < u < 1 - \frac{v}{4} \\ 0 & \text{else} \end{cases}
\]

That is, given \(Y = v\), the conditional distribution of \(X\) is uniform over the interval \(\left[\frac{v}{4}, 1 - \frac{v}{4}\right]\). For \(v < 0\) or \(v \geq 2\), the conditional pdf \(f_{X|Y}(u|v)\) is not defined.

(d) Obtain \(E[X|Y = v]\) for all \(v\).

Solution: The mean of the uniform distribution over \(\left[\frac{v}{4}, 1 - \frac{v}{4}\right]\) is the midpoint of the interval, or \(\frac{1}{2}\). Thus, for \(0 \leq v < 2\), \(E[X|Y = v] = \frac{1}{2}\). For other \(v\), \(E[X|Y = v]\) is not defined.) Another way to get this result is to use the formulas:

\[
E[X|Y = v] = \int_{-\infty}^{\infty} u f_{X|Y}(u|v) du
\]

\[
= \int_{\frac{v}{4}}^{1-\frac{v}{2}} \frac{2u}{2-v} du
\]

\[
= \frac{1}{2-v} \left. u^{1-\frac{v}{4}} \right|_{\frac{v}{4}}^{1-\frac{v}{2}} = \frac{1}{2}
\]
(e) Determine if X and Y are independent and indicate why or why not.

Solution: X and Y are not independent because the support is not a product set. Another reason is that $f_{X|Y}(u|v)$ depends on v.

7. **[18 points]** Consider an On-Off Keying (OOK) communication system, where we either transmit $x = 0$ or $x = A$ with $A > 0$ being a constant. At the receiver side, detecting if a “0” was transmitted ($x = 0$) or a “1” was transmitted ($x = A$) can be posed as the following binary hypothesis testing problem for observation Y:

$$
\mathcal{H}_0 : Y = W \quad \mathcal{H}_1 : Y = A + W
$$

where W is a $\mathcal{N}(0, \sigma^2)$ random variable corresponding to additive noise at the receiver.

(a) Determine $f_0(y)$, the pdf of Y under \mathcal{H}_0, and also $f_1(y)$, the pdf of Y under \mathcal{H}_1.

Solution: For \mathcal{H}_0, $Y = W$ hence

$$f_0(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}.$$

For \mathcal{H}_1, $Y = A + W$. Since Y is obtained from W by adding the constant A, the pdf of Y is obtained by shifting the pdf of W to the right by A. That is, under \mathcal{H}_1, Y has the $\mathcal{N}(A, \sigma^2)$ distribution:

$$f_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-A)^2}{2\sigma^2}}.$$

(b) Determine the MAP decision rule assuming the priors π_0 and π_1 are known. Express the rule in terms of Y in the simplest way possible.

Solution: The likelihood ratio test for the MAP rule is:

$$\frac{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y-A)^2}}{\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}y^2}} > \frac{\pi_0}{\pi_1}.$$

Cancelling common factors and taking the logarithm to both sides yields:

$$-\frac{1}{2\sigma^2}(-2Ay + A^2) > \ln \left(\frac{\pi_0}{\pi_1} \right).$$

Hence, the MAP rule decides \mathcal{H}_1 if $Y > \frac{\sigma^2}{A} \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{A}{2}$ and \mathcal{H}_0 otherwise.

(c) Assume that $\pi_0 = \pi_1$. Determine the average error probability, p_e. You can leave your answer in terms of the Q or the Φ functions.

Solution: If $\pi_0 = \pi_1$, the MAP rule decides \mathcal{H}_1 if $Y > \frac{A}{2}$ and \mathcal{H}_0 otherwise.

$$p_{FA} = P(\text{decide } \mathcal{H}_1 | \mathcal{H}_0 \text{ is true}) = P \left(y > \frac{A}{2} | \mathcal{H}_0 \right) = Q \left(\frac{A}{2\sigma} \right) = Q \left(\frac{A}{2\sigma} \right).$$

$$p_{miss} = P(\text{decide } \mathcal{H}_0 | \mathcal{H}_1 \text{ is true}) = P \left(y \leq \frac{A}{2} | \mathcal{H}_1 \right) = \Phi \left(\frac{A - A}{\sigma} \right) = \Phi \left(-\frac{A}{2\sigma} \right) = Q \left(\frac{A}{2\sigma} \right).$$
Thus,
\[p_c = \pi_0 p_{F,A} + \pi_1 p_{miss} = \frac{1}{2} Q \left(\frac{A}{2\sigma} \right) + \frac{1}{2} Q \left(\frac{A}{2\sigma} \right) = Q \left(\frac{A}{2\sigma} \right). \]

8. [18 points] Suppose \(X \) and \(Y \) are zero-mean unit-variance jointly Gaussian random variables with correlation coefficient \(\rho = 0.5 \).

(a) Obtain \(\text{Var}(3X - 2Y) \).

Solution: \(\text{Var}(3X - 2Y) = 3^2 \cdot \text{Var}(X) + 2^2 \cdot \text{Var}(Y) - 2 \cdot 3 \cdot 2 \cdot \text{cov}(X, Y) = 9 + 4 - 12 \times \frac{1}{2} = 7. \)

(b) Obtain \(P\{ (3X - 2Y)^2 \leq 28 \} \) in terms of the \(Q \) or the \(\Phi \) functions.

Solution: \(\mathbb{E}[3X - 2Y] = 3 \cdot \mathbb{E}[X] - 2 \cdot \mathbb{E}[Y] = 0. \) Furthermore, since \(X \) and \(Y \) are *jointly Gaussian* random variables, \(3X - 2Y \) is also a Gaussian random variable, and we have that
\[P\{ (3X - 2Y)^2 \leq 28 \} = P\{ -\sqrt{28} \leq 3X - 2Y \leq \sqrt{28} \} = \Phi \left(\frac{\sqrt{28} - 0}{\sqrt{7}} \right) - \Phi \left(-\frac{\sqrt{28} - 0}{\sqrt{7}} \right) = \Phi(2) - \Phi(-2) = \Phi(2) - [1 - \Phi(2)] = 2\Phi(2) - 1. \]

(c) Obtain \(\mathbb{E}[Y \mid X = 3] \).

Solution: Since \(X \) and \(Y \) are *jointly Gaussian* random variables, the conditional mean of \(Y \) given \(X = \alpha \) is the same as the linear MMSE estimator of \(X \) given \(X = \alpha \), viz. \(\mu_y + \rho (\sigma_y / \sigma_x) (\alpha - \mu_x) \)
\[= 0 + 0.5 \times 1 \times (3 - 0) = 3/2. \]

9. [12 points] Observations \(X_1, \ldots, X_T \) produced by a drone’s altimeter are assumed to have the form \(X_t = bt + W_t \) where \(b \) is an unknown constant representing the rate of ascent of the drone (if \(b < 0 \) it means the drone is descending) and \(W_1, \ldots, W_T \) represent observation noise and are assumed to be independent, \(N(0, 1) \) random variables.

(a) Write down the joint pdf of \(X_1, \ldots, X_T \).

Solution: \(X_t \) is \(N(bt, 1) \) so \(f_{X_t}(x_t) = \frac{1}{\sqrt{2\pi}} e^{-(x_t - bt)^2 / 2} \). Since the observations are independent, the joint pdf is the product of the marginal pdfs:
\[f_{X_1, \ldots, X_T}(x_1, \ldots, x_T) = \frac{1}{(2\pi)^{T/2}} e^{-\sum_{t=1}^T \frac{(x_t - bt)^2}{2}} \]

(b) Obtain the maximum likelihood estimator of \(b \) for a particular vector of observations \(x_1, \ldots, x_T \).

Solution: \(\hat{b}_{ML} \) is the value of \(b \) that maximizes \(f_{X_1, \ldots, X_T}(x_1, \ldots, x_T) \), or equivalently, minimizes \(\sum_{t=1}^T \frac{(x_t - bt)^2}{2} \). This is a quadratic function of \(b \) that is minimized by setting the derivative to zero.
\[\frac{d}{db} = \sum_{t=1}^T (x_t - bt)(-t) = b \sum_{t=1}^T t^2 - \sum_{t=1}^T x_t t \]
Setting the derivative to zero yields
\[\hat{b}_{ML} = \frac{\sum_{t=1}^{T} x_t t}{\sum_{t=1}^{T} t^2}. \]

10. [18 points] Suppose \(U \) and \(V \) are independent random variables such that \(U \) is uniformly distributed over \([0, 1]\) and \(V \) is uniformly distributed over \([0, 2]\). Let \(S = U + V \).

(a) Obtain the mean and variance of \(S \).

Solution:
\[E[S] = E[U] + E[V] = 0.5 + 1 = 1.5. \]
\[\text{Var}(S) = \text{Var}(U) + \text{Var}(V) = \frac{1}{12} + \frac{2^2}{12} = \frac{5}{12}. \]

(b) Derive and carefully sketch the pdf of \(S \).

Solution:
\[f_S(c) = \int_{-\infty}^{\infty} f_U(u) f_V(c-u) du = \begin{cases}
 c/2 & 0 \leq c \leq 1 \\
 1/2 & 1 \leq c \leq 2 \\
 (c-2)/2 & 2 \leq c \leq 3 \\
 0 & \text{else}
\end{cases} \]

(c) Obtain \(\hat{E}[U|S] \), the minimum mean square error linear estimator of \(U \) given \(S \).

Solution:
\[\text{Cov}(U, S) = \text{Cov}(U, U + V) = \text{Var}(U) = \frac{1}{12}. \]
Thus,
\[\hat{E}[U|S] = E[U] + \frac{\text{Cov}(U, S)}{\text{Var}(S)} (S - E[S]) = \frac{1}{2} + \frac{1}{5} (S - 1.5) \]

11. [30 points] (3 points per answer)

In order to discourage guessing, 3 points will be deducted for each incorrect answer (no penalty or gain for blank answers). A net negative score will reduce your total exam score.

(a) Suppose \(X \) and \(Y \) are jointly continuous-type random variables with finite variance.

TRUE \hspace{0.5cm} **FALSE**

\[\square \quad \square \quad \text{If the MMSE for estimating} \ Y \text{from} \ X \text{is} \ \text{Var}(Y), \text{then} \ X \text{and} \ Y \text{must be uncorrelated.} \]

\[\square \quad \square \quad \text{If} \ X \text{and} \ Y \text{are uncorrelated then the MMSE for estimating} \ Y \text{from} \ X \text{is} \ \text{Var}(Y). \]

\[\square \quad \square \quad \text{If} \ X \text{and} \ Y \text{are uncorrelated and jointly Gaussian, then} \ \text{the MMSE for estimating} \ Y \text{from} \ X \text{is} \ \text{Var}(Y). \]

Solution: True, False, True
(b) Let X_1, \ldots, X_m be independent random variables, each with the binomial distribution with parameters 10 and p, where $0 < p < 1$, and let $S_m = X_1 + \ldots + X_m$.

\begin{tabular}{cc}
TRUE & FALSE \\
\square & \square \\
\end{tabular}

S_m has a binomial distribution

\begin{tabular}{cc}
\square & \square \\
\end{tabular}

$\lim_{m \to \infty} P \left\{ \frac{S_m}{m} \geq 10p(1-p) \right\} = 1$

Solution: True, True

(c) Consider a binary hypothesis testing problem. Let the subscript ML denote the maximum likelihood rule, and subscript MAP denote the maximum a posteriori rule.

\begin{tabular}{cc}
TRUE & FALSE \\
\square & \square \\
\end{tabular}

It is possible that $p_{\text{miss},ML} < p_{\text{miss},MAP}$.

\begin{tabular}{cc}
\square & \square \\
\end{tabular}

It is possible that $p_{\text{false alarm},ML} = p_{\text{false alarm},MAP}$.

\begin{tabular}{cc}
\square & \square \\
\end{tabular}

If $\pi_0 > \pi_1$ it is possible that $p_{\text{miss},ML} < p_{\text{miss},MAP}$.

Solution: True, True, True

(d) Let X and Y be uncorrelated, jointly Gaussian random variables, with parameters μ_X, μ_Y, σ_X^2 and σ_Y^2.

\begin{tabular}{cc}
TRUE & FALSE \\
\square & \square \\
\end{tabular}

$f_{XY}(u,v) = f_X(u)f_Y(v)$ for all real u,v

\begin{tabular}{cc}
\square & \square \\
\end{tabular}

$E[XY] = 0$.

Solution: True, False