ECE 313: Hour Exam I

Monday October 14, 2013
7:00 p.m. - 8:20 p.m.
Library 66, Sections X and C (9 a.m. and 10 a.m.)
Altgeld Hall 314, Sections D and E (11 a.m. and 1 p.m.)

1. [8 points] What is $\mathrm{E}\left[X^{2}\right]$ for a Poisson random variable X with mean 6 ?

Solution: $\mathrm{E}\left[X^{2}\right]=\operatorname{var}(X)+(\mathrm{E}[X])^{2}$. For a Poisson random variable with parameter λ, $\mathrm{E}[X]=\operatorname{var}(X)=\lambda$ and thus $\mathrm{E}\left[X^{2}\right]=6+6^{2}=42$.
2. [8 points] If Y is a geometric random variable with parameter $\frac{1}{2}$, what is $\operatorname{var}(3-2 Y)$?

Solution: $\operatorname{var}(a Y+b)=a^{2} \operatorname{var}(Y)$. Since Y is given to be a geometric random variable, $\operatorname{var}(Y)=\frac{1-p}{p^{2}}=\frac{1 / 2}{(1 / 2)^{2}}=2$, we get that $\operatorname{var}(3-2 Y)=(-2)^{2} \times 2=8$.
3. [8 points] Let X denote the number of Heads that occur on 10 independent tosses of a coin with $P\{$ Heads $\}=p$. Given that $m>0$ heads were observed on the 10 tosses, what is the conditional probability that the second toss resulted in Heads?

Solution: Since $1 \leq m \leq 10$,

$$
\begin{aligned}
P\{\text { second toss Heads } \mid X=m\} & =\frac{P\{\{\text { second toss Heads }\} \cap\{X=m\}\}}{P\{X=m\}} \\
& =\frac{P\{\{\text { second toss Heads }\} \cap\{m-1 \text { Heads in } 9 \text { other tosses }\}\}}{P\{X=m\}} \\
& =\frac{P\{\text { second toss Heads }\} P\{m-1 \text { Heads in } 9 \text { other tosses }\}}{P\{X=m\}} \\
& =\frac{p \cdot\binom{9}{m-1} p^{m-1}(1-p)^{9-(m-1)}}{\binom{10}{m} p^{m}(1-p)^{10-m}}=\frac{\frac{9!}{(m-1)!(9-(m-1))!}}{\frac{10!}{m!(10-m)!}}=\frac{m}{10} .
\end{aligned}
$$

4. [16 points] A biased coin is tossed repeatedly until a Head occurs for the first time. The probability of Heads in each toss is $\frac{1}{3}$. Let X denote the number of tosses required until the first Head shows.
(a) $[8$ points] Find $E[X]$.

Solution: Notice that X is a geometric random variable with parameter $p=1 / 3$, hence $E[X]=1 / p=3$.
Alternatively, notice that for integer $k>0, P\{X=k\}=(1-p)^{k-1} p=q^{k-1} p$, where $q=1-p$, so that

$$
\begin{aligned}
E[X] & =\sum_{k=1}^{\infty} k P\{X=k\}=\sum_{k=1}^{\infty} k q^{k-1} p=p \frac{d}{d q}\left(\sum_{k=0}^{\infty} q^{k}\right)=p \frac{d}{d q}\left(\frac{1}{1-q}\right)=p\left(\frac{1}{(1-q)^{2}}\right) \\
& =p\left(\frac{1}{p^{2}}\right)=\frac{1}{p}=3 .
\end{aligned}
$$

(b) [8 points] Find $P\{X=7 \mid X>5\}$.

Solution: By the memoryless property of the geometric distribution,
$P\{X=7 \mid X>5\}=P\{X=7-5\}=P\{X=2\}=(1-p) p=\left(1-\frac{1}{3}\right) \frac{1}{3}=\frac{2}{9}$.
To do this in more detail,
$P\{X=7 \mid X>5\}=\frac{P\{X=7, X>5\}}{P\{X>5\}}=\frac{P\{X=7\}}{P\{X>5\}}=\frac{(1-p)^{6} p}{(1-p)^{5}}=(1-p) p=\left(1-\frac{1}{3}\right) \frac{1}{3}=\frac{2}{9}$.
5. [20 points] While debugging a software program, a student has narrowed it down to one of two bugs. Bug 1 leads to error message 1 with probability $\frac{1}{5}$ and error message 2 with probability $\frac{4}{5}$. Bug 2 leads to error message 1 with probability $\frac{2}{3}$ and error message 2 with probability $\frac{1}{3}$. The student also has the knowledge that the bug 1 is 5 times more likely to appear than bug 2, and that the two bugs cannot exist simultaneously.
(a) [10 points] What is the probability that error message 1 appears?

Solution: Let $E 1$ denote the event of error message 1, $B 1$ denote the event of bug 1 and $B 2$ the event of bug 2 .

$$
P(E 1)=P(E 1 \mid B 1) P(B 1)+P(E 1 \mid B 2) P(B 2)=\frac{1}{5} \times \frac{5}{6}+\frac{2}{3} \times \frac{1}{6}=\frac{5}{18} .
$$

(b) [10 points] Given that error message 1 appears, what is the probability that the system has bug 1?
Solution:

$$
P(B 1 \mid E 1)=\frac{P(E 1 \mid B 1) P(B 1)}{P(E 1)}=\frac{\frac{1}{5} \times \frac{5}{6}}{\frac{5}{18}}=\frac{3}{5} .
$$

6. [20 points] Consider events A, B, C, and D with probabilities $P(A)=1 / 5, P(B)=3 / 5$, $P(C)=2 / 5$, and $P(D)=3 / 5$, and suppose that $P(B \mid A)=1 / 2$.
(a) [7 points] Find $P\left(A^{c} B\right)$ and $P(A \mid B)$.

Solution:

$$
\begin{aligned}
P\left(A^{c} B\right) & =P(B)-P(A B)=P(B)-P(B \mid A) P(A)=\frac{3}{5}-\frac{1}{2} \times \frac{1}{5}=\frac{1}{2} \\
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B)}=\frac{\frac{1}{2} \times \frac{1}{5}}{\frac{3}{5}}=\frac{1}{6}
\end{aligned}
$$

(b) [5 points] If A and C are independent, find $P\left(A^{c} C\right)$.

Solution:

$$
P\left(A^{c} C\right)=P\left(A^{c}\right) P(C)=\left(1-\frac{1}{5}\right) \frac{2}{5}=\frac{8}{25}
$$

(c) [8 points] If A and D are mutually exclusive, find as tight upper and lower bounds as possible on $P(B D)$.
Solution: Since $A \cap D=\emptyset$, and so $A B D \subset A D$ is also the empty set, we get that

$$
B D=A^{c} B D \cup A B D=A^{c} B D \cup \emptyset=A^{c} B D \quad \Rightarrow \quad P(B D)=P\left(A^{c} B D\right) .
$$

Now, since $A^{c} B D \subset A^{c} B$ and we know from part (a) that $P\left(A^{c} B\right)=\frac{1}{2}$, we have that

$$
P(B D)=P\left(A^{c} B D\right) \leq P\left(A^{c} B\right)=\frac{1}{2} .
$$

Now, $\frac{3}{5}=P(D)=P(A D)+P\left(A^{c} D\right)=P\left(A^{c} D\right)$, and since $\left(A^{c} B \cup A^{c} D\right) \subset A^{c}$, we get that

$$
\begin{aligned}
P\left(A^{c} B \cup A^{c} D\right) & =P\left(A^{c} B\right)+P\left(A^{c} D\right)-P\left(A^{c} B D\right) \\
& =\frac{1}{2}+\frac{3}{5}-P(B D) \\
& =\frac{11}{10}-P(B D) \\
& \leq P\left(A^{c}\right)=\frac{4}{5}
\end{aligned}
$$

giving us that $P(B D) \leq \frac{3}{10}$. Thus,

$$
\frac{3}{10} \leq P(B D) \leq \frac{1}{2}
$$

7. [20 points] Consider a regular 8 x 8 chessboard, which consists of 64 squares in 8 rows and 8 columns.
(a) [10 points] How many different rectangles, comprised entirely of chessboard squares, can be drawn on the chessboard? Hint: there are 9 horizontal and 9 vertical lines in the chessboard.
Solution: A rectangle is uniquely described by the pair of horizontal lines and the pair of vertical lines that form its sides. Since there are $\binom{9}{2}=\frac{9 \times 8}{1 \times 2}=36$ choices for the pair of horizontal lines and, similarly, 36 choices for the pair of vertical lines, there are $\binom{9}{2}^{2}=36 \times 36=1296$ rectangles.
(b) [10 points] One of the rectangles you counted in part (a) is chosen at random. What is the probability that it is square shaped?
Solution: Number the horizontal and vertical lines as 0 through 8. Then, for any given $k, 1 \leq k \leq 8$, we get a $k \times k$ square if we pick the pair of horizontal lines as one of $(0, k),(1, k+1),(2, k+2), \ldots,(8-k, 8)$ and similarly for the pair of vertical lines. Thus, the number of $k \times k$ squares is $(9-k)^{2}$. Hence, the number of square shaped rectangles is $1^{2}+2^{2}+3^{2}+\cdots+8^{2}=12 \cdot 17$. So the probability of a getting a square shaped rectangle is $\frac{12 \cdot 17}{36 \times 36}=\frac{17}{108}$.
