“R” Programming Language
Tutorial

ECE 313 — Section B
University of lllinois at Urbana - Champaign

Outline

Why R, and R Paradigm
References, Tutorials and links
R Overview

R Interface

R Workspace

Help

R Packages

Input/Output

Reusing Results

Why R?

It's freel

It runs on a variety of platforms including Windows, Unix and
MacOS.

It provides an unparalleled platform for programming new
statistical methods in an easy and straightforward manner.

It contains advanced statistical routines not yet available in
other packages.

It has state-of-the-art graphics capabilities.

Installing R

e How to download R:
— http://www.r-project.org/

13 7

— Google: R
— Windows, Linux, Mac OS X, source

— On mindhive:
e user@bal:~$> R [terminal only]
e user@bal:~$> R —g Tk & [application window]

e Files for this tutorial:

— http://web.mit.edu/tkp/www/R/R Tutorial Data.txt
— http://web.mit.edu/tkp/www/R/R Tutorial Inputs.txt

http://www.r-project.org/�
http://web.mit.edu/tkp/www/R/R_Tutorial_Data.txt�
http://web.mit.edu/tkp/www/R_Tutorial_Inputs.txt�
http://web.mit.edu/tkp/www/R/R_Tutorial_Data.txt�
http://web.mit.edu/tkp/www/R_Tutorial_Inputs.txt�

Tutorials

Each of the following tutorials are in PDF format.

P. Kuhnert & B. Venables, An Introduction to R: Software for
Statistical Modeling & Computing

J.H. Maindonald, Using R for Data Analysis and Graphics
B. Muenchen, R for SAS and SPSS Users
W.J. Owen, The R Guide

D. Rossiter, Introduction to the R Project for Statistical Computing
for Use at the ITC

W.N. Venebles & D. M. Smith, An Introduction to R

http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip�
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip�
http://cran.r-project.org/doc/contrib/usingR.pdf�
http://rforsasandspssusers.googlepages.com/RforSASSPSSusers.pdf�
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf�
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf�
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf�
http://cran.r-project.org/doc/manuals/R-intro.pdf�

Where to find R help and resources on the web

e R wiki:
http://rwiki.sciviews.org/doku.php
 Rgraph gallery:

http://addictedtor.free.fr/gsraphigues/thumbs.php . R

: : IN A NUTSHELL
e Kickstarting R: ey e

http://cran.r-project.org/doc/contrib/Lemon-kickstart/

ISBN: 9780596801700

OREILLY o ot

rch - Mozilla Firefox =1 &) h Gallery i thumbnails gallery - Mozilla Firefox =10 x|

He Edt Vew HEtory Bookmaks Took Hep B Edt Vew Hstory Bookmaks Took Heb

6 - & X |—thp:.l’.n‘uw.ng)_'.curn.*wur_H?Ii=m&5u|u=0|‘&xh.v|L=I'l|.'IL\=. aBl=1r - |"—I'|RNJLUIH1'(JW # @ E 6 = G X i |--.nup-.um.-b.uunw Ir figr apb e A i, php = m-;l".NJLurlh_'duy 4 @ =
| 4R plot resicuals - Google Search| - | E [- O . -
Web lmages “ideos Maps Mews Shopping Gmal mors v Wb History | Search settings | Sign in =

GOUgle R plot residuals Search | FUEEEnEre

Abnd 2,740,000 sk (0.24 secers) 1 Aubvarcrad sarch .
21 Everything R Flot Reslduals H@n Related Source cade Graphics List Thumb

v More plot sesiduals [rrulil], K Do Plat Residuals [fian plot sesiduals i
- weed for plotting residuals from medels cblamed fram dyname ..
25 acs.unt eduwRdocibrargmutihmbpletresiduals html - Cachad

T

Image scatter plot
matrix

= Show search toals

R Rasldual plot for I of nils objacts
Canstructs a residual plot far I or nks abjects. Difsrert syrbods for different groups can be
added to the plot if an indicator varisble regression iz .

weans rforge. netfdocipackagesMC EBratalresidual plat Hirnl - Cached -

Thi ipairs funcbon produces an

R Reslduals from a | onistic Rearession Madal Fit
Thie i
pl=l

image scatter plot matrix of large

of burary ... Unider R,

: datasets where the colors

.gl alesullmls i hi

eneode

R nelp archiver [R] plotting rasiduals

oy 4, 2006 ... [R] plotting residuals. This message : [Mezsage body | [Mare ogtions ..

Does anyone know how to obtan & piat of residuals by pracec
1olstoy. newcasile edu suPie2/help/DE/1 1 /4468 himl - Cache

I
| A

PR

wos Plets of Reslduals

File Fammat: Microsoft Ward - View as HTM
Natice that thie B hias gore up i ol g e
Let us have & loak &t the regression kne.
core.acu edulpsychmuenschkizpss! 'Resullml Plots-SP

wor R FUNCTIONS FOR REGRESSION AMALYSES

e sagruhicard, and the cesiduals plot looks fine

() (
)(ﬁ")(“

5 fa‘\f\z—ww\f"‘“&

File Far POFAdabe Acrobat - Cuck \-"

Oct 14, 2005 ... ggnoem. ghe: Mormal Plot uillesldlmlsﬂom a glz Object (Mme) reg.rpan: 0
PFlots the Approximate R-Square for the Differant Splits (pat .. e
. 1 rop docontrib/Rices sefcard-egnession pl - Sl e

Mormed Prob

ility Plot of Residuals | R Tulorial

lar A 00 ___AnD futnris) in the mneensl nenkshilite mlat far tha vasldual of 3 simnla finage :l

rl |] RS

s Yy EpTEpn =153

http://rwiki.sciviews.org/doku.php�
http://addictedtor.free.fr/graphiques/thumbs.php�
http://cran.r-project.org/doc/contrib/Lemon-kickstart/�

More Links

R time series tutorial

R Concepts and Data Types presentation by Deepayan Sarkar
Interpreting Output From Im()

The R Wiki

An Introduction to R

Import / Export Manual

R Reference Cards

http://casoilresource.lawr.ucdavis.edu/drupal/node/100�
http://www.stat.wisc.edu/~deepayan/SIBS2005/slides/language-overview-4.pdf�
http://www.rni.helsinki.fi/~pek/s-tools/lm-more.r�
http://wiki.r-project.org/rwiki/doku.php�
http://cran.r-project.org/doc/manuals/R-intro.pdf�
http://cran.r-project.org/doc/manuals/R-data.html�
http://cran.r-project.org/doc/contrib/Short-refcard.pdf�

Introduction

Ris “GNUS” — Alanguage and environment for data

manipula-tion, calculation and graphical display.

R is similar to the award-winning S system, which was developed at Bell
Laboratories by John Chambers et al.

a suite of operators for calculations on arrays, in particular matrices,

a large, coherent, integrated collection of intermediate tools for interactive
data analysis,

graphical facilities for data analysis and display either directly at the computer
or on hardcopy

a well developed programming language which includes conditionals, loops,
user defined recursive functions and input and output facilities.

Introduction

 The core of Ris an interpreted computer language.
— It allows branching and looping as well as modular programming using functions.

— Most of the user-visible functions in R are written in R, calling upon a smaller set
of internal primitives.

— It is possible for the user to interface to procedures written in C, C++ or
FORTRAN languages for efficiency, and also to write additional primitives.

What R does and does not

odata handling and storage: 0ls not a database, but
numeric, textual connects to DBMSs
omatrix algebra ohas no graphical user
ohash tables and reaular Interfaces, but connects to
) Java, TclTk

expressions _
o language interpreter can be

very slow, but allows to call
own C/C++ code

0 no spreadsheet view of data,

o high-level data analytic and
statistical functions

oclasses (“O0”)

ographics but connects to
o programming language: Excel/MsOffice
loops, branching, ono professional /

subroutines commercial support

Some Useful Functions

length(object) # number of elements or components
str(object) # structure of an object

class(object) # class or type of an object
names(object) # names

c(object,object,...) # combine objects into a vector
cbind(object, object, ...) # combine objects as columns
rbind(object, object, ...) # combine objects as rows
Is() # list current objects

rm(object) # delete an object

newobject <- edit(object) # edit copy and save a
newobject

fix(object) # edit in place

R Warning !

R is a case sensitive language.
FOO, Foo, and foo are three different objects

Getting Help

> help(t.test)
> help.search(''standard deviation')

=153 IR Rraui

Fle Edt Wiew Hitory Bookmarks Tools Help File Edit Windows
L @ % [®[np127.00.97 3 oSttt esthr 7 - M| coodk
| R Students e = B

t.test {stats} R Documentation |

R version 2.11.1 (2010-05-31)

' Copyright {(C} 2010 The R Foundation for Statistical Computing
Student's t-Test ISBN 3-900051-07-0

Description s reee o T

You are welco

e Help files with alias or concept or title matching ‘standard deviation’
Type 'license

Performs one and two sample t-tests on vectors of data. using fuzzy matching:

— Natural lan
Usage

nlme: :pooledsD Extract Pooled Standard Deviation

R s a collab stats::sd Standard Deviation

t.testiz, ...} Type 'contrib
i Tcitation() "

#4# Default 53 method: Type "demo () Type "7PKG::FOO'" to inspect entry 'PKG::FOO TITLE'.
t.test(x, y = NULL, *help.start ()

alternative = c("two.sided”, "less"™, "greater™), Type g ()’ to

mu = 0, paired = FALSE, wvar.ecual = FALSE,

conf.level = 0.95, ...) > help.search

>
#4# 53 method for class "formula':
t.test(formula, data, subset, na.action, ...)

Arguments
% a (non-empty) numeric vector of data values.
b an optional (non-empty) numeric vector of data values.

alternative g character string specifying the alternative hypothesiz, must be
one of "two.sided"” (default), "greater™ or "less". You can
gpecify just the initial letter.
Juk} a number mdicating the true value of the mean (or difference ian
4| | 3
| Dore [

Workspace

R Workspace

— Objects that you create during an R session
are hold in memory, the collection of
objects that you currently have is called the
workspace. This workspace is not saved on
disk unless you tell R to do so. This means
that your objects are lost when you close R
and not save the objects, or worse when R
or your system crashes on you during a
session.

R Workspace

* When you close the RGui or the R console window,
the system will ask if you want to save the
workspace image.

* If you select to save the workspace image then all
the objects in your current R session are saved in a
file .RData.

e This is a binary file located in the working directory
of R, which is by default the installation directory
of R.

R Workspace

* During your R session you can also explicitly save
the workspace image. Go to the File menu and
then select Save Workspace..., or use the
save.image function.

e ## save to the current working directory

e save.image()

e #i# just checking what the current working directory is

e getwd()

e ## save to a specific file and location

e save.image("C:\\Program Files\\R\\R-2.5.0\\bin\\.RData")

R Workspace

* If you have saved a workspace image and you start
R the next time, it will restore the workspace. So
all your previously saved objects are available
again. You can also explicitly load a saved
workspace le, that could be the workspace image
of someone else. Go the File' menu and select

"Load workspace...".

R Workspace

save your command history
Save 1istory(fi|e="myfile") # default is ".Rhistory"

recall your command history
loadhistory(file="myfile") # default is ".Rhistory*

R Workspace

e To list the objects that you have in your current R session use the
function Is or the function objects.

> |s()

[1] IIX|I Ilyll

e So to run the function Is we need to enter the name followed by an
opening (and and aclosing). Entering only Is will just print the object,
you will see the underlying R code of the the function Is. Most
functions in R accept certain arguments. For example, one of the
arguments of the function Is is pattern. To list all objects starting with
the letter x:

>x2=9

>y2 =10

> |s(pattern="x")
[1] "x" "x2"

Data Input

Importing From A Comma
Delimited Text File

first row contains variable names, comma is separator
assign the variable id to row names

note the / instead of \ on mswindows systems

mydata <- read.table("c:/mydata.csv", header=TRUE, sep=",",
row.names="id")

Importing and exporting data

There are many ways to get data into R and out of R.

Most programs (e.g. Excel), as well as humans, know how to deal with
rectangular tables in the form of tab-delimited text files.

> x = read.delim(“filename.txt”)
also: read.table, read.csv

> write.table(x, file=“x.txt”, sep="\t")

Reading Data from Files

Pred4 Learning

0.90
0.87

0.90

0.29
0.48
0.28

> myData <- read.table(’'R_Tutorial Data.txt",
+ header=TRUE, sep="\t")
> myData _
Condition Group Prel Pre2 Pre3
1 Low A 0.77 0.91 0.24 0.72
2 Low A 0.82 0.91 0.62 0.90
3 Low A 0.81 0.70 0.43 0.46
61 High B 0.44 0.41 0.84 0.82
62 High B 0.48 0.56 0.83 0.85
63 High B 0.61 0.82 0.88 0.95
RJutoriLData.txt - OpenGiifice.org Cale . ;i_}%l x|
i @ farl Tlow T BfUI==== %Ml 0-2-4A-
= T hE = |
& | B [c] D] E I F I G | H -
| 1 Condition Group Prel PreZ Prel3 Prel Learning Gender?]
2 |Low A 0.77 0.9%1 0.24 0.72 0.9M
| 3 [Low A 0.82 0.91 0.62 0.9 0.87F
4 |Low A 0.81 0.7 0.43 0.46 0.9F
| s [Low A 0.88 0.89 0.2 0.63 0.85M
s |Low A 0.78 0.68 0.25 0.73 0.93F
|7 [Low A 0.74 0.9 0.9% 0.59 0.93M
s |Low A 0.78 0.86 0.79 0.78 0.89F
ILOW A 0.76 0.76 0.61 0.85 0.8F
ELEjER@EE[“‘g“‘TH|O-93 0.82 0.99|O.99 0.98M ljﬂ
[Sheet1/1 [Default [e [« [| Sum=0 [o———F—o [150%

B R_Tutoril_Data.txt Notepad —lolx]
Ble Edit Format yew Help
lcondition Group Prel Pre2 Pre3 Pre4 =
Low A 0.77 0.91 0.24 0.72 0.9
Low A 0.82 0.91 0.62 0.9 0.87
Low A 0.81 0.7 0.43 0.46 0.9
Low A 0.88 0.89 0.2 0.63 0.85
Low A 0.78 0.68 0.25 0.73 0.93
Low A 0.74 0.9 0.99 0.99 0.93
Low A 0.78 0.86 0.79 0.78 0.89
Low A 0.76 0.76 0.61 0.85 0.8
Low A 0.93 0.82 0.99 0.99 0.98
Low A 0.82 0.78 0.28 0.75 0.88
Low A 0.91 0.73 0.87 0.72 0.88
Low A 0.96 0.69 0.69 0.59 0.94
Low A 0.97 0.86 0.89 0.9 0.99
Low A 0.89 0.54 0.79 0.96 0.92
Low A 0.76 0.94 0.81 0.95 0.83
Low A 0.84 0.85 0.97 0.86 0.65
Low B 0.62 0.82 0.43 0.56 0.57
4| | _’l_l
[tn1,cot 4

Importing data: caveats

» Type conversions: by default, the read functions try to guess and autoconvert
the data types of the different columns (e.g. number, factor, character).

» There are options as.is and colClasses to control this — read the online
help

» Special characters: the delimiter character (space, comma, tabulator) and the
end-of-line character cannot be part of a data field.

» To circumvent this, text may be “quoted”.

» Howeuver, if this option is used (the default), then the quote characters
themselves cannot be part of a data field. Except if they themselves are
within quotes...

» Understand the conventions your input files use and set the quote
options accordingly.

Keyboard Input

* You can also use R's built in spreadsheet to enter the data
interactively, as in the following example.

e # enter data using editor
mydata <- data.frame(age=numeric(0), gender=character(0),
weight=numeric(0))
mydata <- edit(mydata)
note that without the assignment in the line above,
the edits are not saved!

Keyboard Input

e Usually you will obtain a dataframe by importing it from SAS,
SPSS, Excel, Stata, a database, or an ASCII file. To create it
interactively, you can do something like the following.

e create a dataframe from scratch
age <- c(25, 30, 56)
gender <- c("male", "female", "male")
weight <- ¢(160, 110, 220)
mydata <- data.frame(age,gender,weight)

http://www.statmethods.net/input/importingdata.html�

Exporting Data

There are numerous methods for exporting R objects into other
formats . For SPSS, SAS and Stata. you will need to load the

foreign packages. For Excel, you will need the xlsReadWrite
package.

http://cran.r-project.org/web/packages/foreign/index.html�
http://cran.r-project.org/web/packages/xlsReadWrite/index.html�

Exporting Data

To A Tab Delimited Text File
write.table(mydata, "c:/mydata.txt", sep="\t")
To an Excel Spreadsheet

library(xlsReadWrite)
write.xlIs(mydata, "c:/mydata.xls")

To SAS

library(foreign)
write.foreign(mydata, "c:/mydata.txt",
"c:/mydata.sas", package="SAS")

Viewing Data

There are a number of functions for listing the contents of an object or
dataset.

list objects in the working environment
Is()

list the variables in mydata
names(mydata)

list the structure of mydata
str(mydata)

list levels of factor v1 in mydata
levels(mydataSvl)

dimensions of an object
dim(object)

Viewing Data

There are a number of functions for listing the contents of an object or
dataset.

class of an object (hnumeric, matrix, dataframe, etc)
class(object)

print mydata
mydata

print first 10 rows of mydata
head(mydata, n=10)

print last 5 rows of mydata
tail(mydata, n=5)

Examining datasets

> plot(myData)

. RGUi (=]

Fle Hstory Resize Windows

Fr Graphics: Device 2 (ACTIVE)

41 High A 0.85
42 High A 0.98
a3 High A 0.96 10 14 18 02 06 10 02 06 10
44 High A 0.87 e I T e - xshoacs) o
45 High A 0.90 L@
18 H}gh ~0.88 Condition =
47 High A 0.96 r=
48 High B 0.62 -
: iz oo om 2000 6 om) kom0
49 High B 0.54 -
50 High B 0.50 @] T
51 High B 0.53 -]
52 High E 0.66 =4 Graup
53 High B 0.55 N
54 High B 0.55 = S
55 High B 0.66 oW T == -
56 High E D.58] %cﬁsoo%& ool % %8 s 87t . 3
57 High E 0.43 B Prel e8| ¥ 000 ©F° g o 0% o o WE
58 High B D.66 N oo a| | fe o o 0&% o, To 890 °
g - o 8B et B o ALY
50 High B 0.55 o s vg o |, 5) &30 ° 3
60 High B 0.51 o
X = = 5 o = 3
&1 High B 0.44 2 8%l) o% A A
&2 High B 0.48 o] g g oo wmted, 200008 85 L 8% 8% |, “’Z@%
63 High B 0.61 =i g eg” 2o Pre2 o fp R PR
> plot (myData) b S @
J

Learning

Changing the Look of Graphics (l)

e The most likely change: orientation and size of labels of x and y axes:

> plot(xvalues,yvalues, ylab = "Label for y axis", xlab =
"Label for x axis', las = 1, cex.lab = 1.5)

ylab, xlab :changes the annotation of the axis labels;

las :numericin {0,1,2,3} change orientation of the axis labels;

cex.lab : magnification to be used for x and y labels;

To get full range of changes about graphical parameters:
>?par

Working with Data

Selecting Subsets of Data

QOO HANLOOC AL
OLULNOOMN OO

COO0CO0OO0OO0O0O 000

OMNOMUO—EHWD OO
OOUOLOONT 0W0OO

COOCO0OO0O0O 000

OLANANLLOD OO
QOO MN~N 0069

OOOOOOO]OOO

3348934A330
OO NT: | 9000
COO0CO0OO0OO0O0O _n_POO1_
OANMTHO 0T SMANO
o)NerRicNerNerNeo RNy 0997
OOOOOOOM.WOOO
OO OMLO CLHOILOOD
8965037“8999
0000100w0000
OYONO0MEOITIN~O
99900471_4%9990
COO0OO0O0O0O0CO0COO0OHA
CNN00OMN~NWO S S0 -
Moooo64993 Moooooog
eOOOOOOO eOOOO

$0844700$0835
mgoog_bgo_/mgoogg
80000010 aOOOO

y]]]]]]] Y]]]]
EHOOOMNOLO EHOO) 00
- =N < LO b —{ (\|
A el el] /\]]

Selecting Subsets of Data

0O LO 00 «— I~ LO 00
oOULNOOMN

COO0CO0OOO0O0O

OO MLO
OO NS

COO0CO0OO0OO00O

OLULANNLLO O
QOO MN~N

COO0CO0OO0OO0O

OISO M
OO N

COO0CO0OO0OO0O0O

MOANMHO O
o)NerRicNerNerNeo RNy

COO0CO0OO0OO0O0O

LOOCOOMLO
OO OMIMN

oOJOoOOM
(@)Ne)Roo R gl bl BN

00 LO 00 «— I~ LO 00
oOULNOOMN

COO0COOO0O0O

OMNOMLO
OOUOLOONT

COO0CO0OOO0O0O

OLULANNLLO O
QOO MN~N

COO0CO0OOO0O0O

MOS0 M
OO0 N

COO0CO0OOO0O0O

MOANMHO O
OO0 OOO 0

COO0CO0OOO0O0O

LOOCOOMLO
OO OMIMN

oSO OM
(@)Ne)Noo R gl bl BN

HOOOOOOO\nW
CNOOOONLOO S =
Moooo64993 O
eOOOOOOO ngOOOOOO
$0844700(n0844700
M9895907h_m9895907
80000010m MOOOOOlO
5 e e e e ey e) ())y ey ey
EHOOOMNO C IHOOONOLW

de— = N) < LO de— = N) < LO
N\ [= S AN AN] e e e] b

COO0CO0OOO00O

NN O S
CROOTOOM

Selecting Subsets of Data

> Learning[Group=="A"]
[1] 0.90 0.87 0.90 0.85
[10] 0.88 0.88 0.94 0.99
[19] 0.93 0.81 0.97 0.95
[28] 0.95 0.97 1.00 0.99
> Learning[Group!="A"]
[1] 0.57 0.55 0.94 0.68
[10] 0.56 0.78 0.54 0.47
[19] 0.88 0.23 0.75 0.21
[28] 0.44 0.44 0.29 0.48

> Condition[Group==""B""&Learning<
[1] Low Low High High High Hi

oleole

oleoleNe)

.93
.92
.70

-89
45
.35

28

[10] High High High High High

Levels: High Low

Q O

-89
.65
-90

oleole

oleole

.80
.98
-99

.84
.18
.43

High

0.98
0.82
0.95

0.92
0.33
0.75

High

Storing data

e Every R object can be stored into and restored from a file with the commands

“save” and “load”.
e This uses the XDR (external data representation) standard of Sun Microsystems
and others, and is portable between MS-Windows, Unix, Mac.

> save(x, file="x.Rdata”)
> |load(“x.Rdata”)

Dataframes

R handles data in objects known as dataframes;
— rows: different observations;

— columns: values of the different variables (numbers,
text, calendar dates or logical variables (T or F);

Field Name Area Slope Vegetation Soil pH Damp Worm density
Nash's Field 3.6 11 Grassland 4.1 F 4
Silwood Bottom 5.1 2 Arable 5.2 F 7
Nursery Field 2.8 3 Grassland 4.3 F 2
Rush Meadow 2.4 5 Meadow 49 T 5
Gunness' Thicket 3.8 0 Scrub 4.2 F 6
Oak Mead 3.1 2 Grassland 3.9 F 2
Church Field 3.5 3 Grassland 4.2 F 3
Ashurst 2.1 0 Arable 4.8 F 4
The Orchard 1.9 0 Orchard 5.7 F 9
Rookery Slope 1.5 4 Grassland 9 T 7
Garden Wood 2.9 10 Scrub 52 F 8
North Gravel 3.3 1 Grassland 4.1 F 1
South Gravel 3.7 2 Grassland 4 F 2

Dataframes (ll)

e All the values of the same explanatory variables must
go in the same column!

e |f you importing data from Excel, save the data in as
tab-delimited text files

e The function read.tabie will fail if there are spaces in
any of tb‘e”variz‘a‘b’l,e names in the header (row 1) =>
replace by .

 To read dataframes into R:

— path: in double quotes;

— header = T :the first row contains the variables names;
— GUI: Used double back slash \\

> worms<-read.table(“c:\\worms. txt",header=T, row.names=1)

Dataframes (lll)

e Use attach to make the variables accessible by

Name.:
> attach(worms)

e Use names to get a list of variable names:

> names(worms)

[1] "Area” "Slope" ""Vegetation"
"“"Soinl.pH" “"‘Damp"’

[6] "Worm.density”

e To see the content of the dataframe (object)

just type ist name:
> worms

Dataframes (lll)

e Summary(worms)

Area

Min. :0.800
1st Qu.:2.175
Median :3.000
Mean :2.990
3rd Qu.:3.725
Max . :5.100

Slope
Min. : 0.00
1st Qu.: 0.75
Median : 2.00
Mean - 3.50
3rd Qu.: 5.25
Max . :11.00

Vegetation
Arable -3
Grassland:9
Meadow -3
Orchard :1
Scrub :4

Soinl.pH
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max .

:3.500

4.100

:4.600
:4.555

5.000

:5.700

Damp

Mode :logical
FALSE:14
TRUE :6

e Values of the continuous variables:
— arithmetic mean;

Worm.density

Min. :0.00
1st Qu.:2.00
Median :4.00
Mean :4.35
3rd Qu.:6.25
Max . :9.00

— maximum, minimum, median, 25 and 75 percentiles

(first and third quartile);
e Levels of categorical variables are counted

Selecting Parts of a Dataframe: Subscripts

e Subscripts within square brackets: to select part
of a dataframe

. [, means,“all the rows” and ,1 means “all the
columns

e To select the first three column of the dataframe

worms.
> worms|[,1:3]}

Area Slope Vegetation

Nashs.Field 3.6 11 Grassland
Si1lwood.Bottom 5.1 2 Arable
Nursery.Field 2.8 3 Grassland
Rush .Meadow 2.4 5 Meadow
Gunness.Thicket 3.8 0 Scrub

C.)

Selecting Parts of a Dataframe: Subscripts (l1)

* To select certain rows based on logical tests on the values of one or more
variables:

> worms[Area>3&Slope<3,]

Area Slope Vegetation Soil.pH Damp Worm.density

Si1lwood.Bottom 5.1 2 Arable 5.2 FALSE 7
Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
North.Gravel 3.3 1 Grassland 4.1 FALSE 1
South.Gravel 3.7 2 Grassland 4.0 FALSE 2
Pond.Field 4.1 0 Meadow 5.0 TRUE 6
Water .Meadow 3.9 0 Meadow 4.9 TRUE 8
Pound.Hill 4.4 2 Arable 4.5 FALSE 5

Value Labels

To understand value labels in R, you need to understand the data structure factor.
You can use the factor function to create your own value lables.
variable vliscoded 1,2 or 3

we want to attach value labels 1=red, 2=blue,3=green
mydataSv1 <- factor(mydataSvl,
levels = ¢(1,2,3),
labels = c("red", "blue", "green"))

variableyiscoded 1,3 or 5

we want to attach value labels 1=Low, 3=Medium, 5=High

http://www.statmethods.net/input/datatypes.html�

Value Labels

mydataSv1l <- ordered(mydataSy,
levels = c(1,3, 5),
labels = c("Low", "Medium", "High"))

Use the factor() function for nominal data and the ordered() function
for ordinal data. R statistical and graphic functions will then treat
the data appropriately.

Note: factor and ordered are used the same way, with the same
arguments. The former creates factors and the later creates
ordered factors.

Missing Data

In R, missing values are represented by the symbol NA (not
available) . Impossible values (e.g., dividing by zero) are represented
by the symbol NaN (not a number). Unlike SAS, R uses the same
symbol for character and numeric data.

Testing for Missing Values

is.na(x) # returns TRUE of x is missing
y <-c(1,2,3,NA)

is.na(y) # returns a vector (FF FT)

Missing Data

e Recoding Values to Missing

recode 99 to missing for variable v1
select rows where v1 is 99 and recode column v1
mydata[mydataSv1==99,"v1"] <- NA

e Excluding Missing Values from Analyses

Arithmetic functions on missing values yield missing values.
x <- c(1,2,NA,3)

mean(x) # returns NA

mean(x, na.rm=TRUE) # returns 2

Missing Data

e The function complete.cases() returns a logical vector
indicating which cases are complete.

— list rows of data that have missing values
mydata[!complete.cases(mydata),]

e The function na.omit() returns the object with listwise
deletion of missing values.

— create new dataset without missing data
newdata <- na.omit(mydata)

Date Values

Dates are represented as the number of days since 1970-01-01, with
negative values for earlier dates.

use as.Date() to convert strings to dates
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

number of days between 6/22/07 and 2/13/04
days <- mydates[1] - mydates[2]

Sys.Date() returns today's date.
Date() returns the current date and time.

Date Values

The following symbols can be used with the format()
function to print dates.

Symbol Meaning Example
%d day as a number (0-31) 01-31
%a abbreviated weekday Mon
%A unabbreviated weekday Monday
%m month (00-12) 00-12
%0b abbreviated month Jan

%B unabbreviated month January
%y 2-digit year 07

%Y 4-digit year 2007

Date Values

print today's date
today <- Sys.Date()

format(today, format="%B %d %Y")
"June 20 2007"

Variables, Lists, and Arrays

Object orientation

primitive (or: atomic) data types in R are:

e nuMeric (integer, double, complex)
e character

e logical

e function

out of these, vectors, arrays, lists can be built.

Object orientation

* Object: a collection of atomic variables and/or other objects that
belong together

o Example: a microarray experiment
e probe intensities
e patient data (tissue location, diagnosis, follow-up)
* gene data (sequence, IDs, annotation)

Parlance:

 class: the “abstract” definition of it
 0Dbject: a concrete instance

* method: other word for “function’
* slot: a component of an object

Object orientation

Advantages:

Encapsulation (can use the objects and methods someone else has written without having
to care about the internals)

Generic functions (e.g. plot, print)
Inheritance (hierarchical organization of complexity)

Caveat:
Overcomplicated, baroque program architecture...

Variables

>a=49

> sqrt(a) .
117 humeric

>a ="The dog ate my homework"
> sub("dog","cat",a)

[1] "The cat ate my homework” ChClr'GCTer'
>a = (1+1==3) string

>a

[1] FALSE

logical

Variable Labels

R's ability to handle variable labels is somewhat
unsatisfying.

If you use the Hmisc package, you can take advantage of
some labeling features.

library(Hmisc)
label(mydataSmyvar) <- "Variable label for variable
myvar"
describe(mydata)

http://cran.r-project.org/web/packages/Hmisc/index.html�

Variable Labels

Unfortunately the label is only in effect for functions provided by
the Hmisc package, such as describe(). Your other option is to
use the variable label as the variable name and then refer to
the variable by position index.

names(mydata)[3] <- "This is the label for variable 3"
mydata[3] # list the variable

Vectors, matrices and arrays

e vector: an ordered collection of data of the same type
>a=c(1,2,3)

>a*2

(11246

e Example: the mean spot intensities of all 15488 spots on a chip: a vector of 15488
numbers

* In R, a single number is the special case of a vector with 1 element.

e Other vector types: character strings, logical

Vectors, matrices and arrays

matrix: a rectangular table of data of the same type

example: the expression values for 10000 genes for 30 tissue biopsies: a matrix with
10000 rows and 30 columns.
array: 3-,4-,..dimensional matrix

example: the red and green foreground and background values for 20000 spots on
120 chips: a 4 x 20000 x 120 (3D) array.

Subscripts: Obtaining Parts of Vectors

Elements of vectors by subscripts in []:

y[3]

The third to the seventh elements of y:

y[3:7]

The third, fifth, sixth and ninth elements:

y[c(3,5,6,7)]

To drop an element from the array, use negative

subscripts:

> y[-1]

 To drop the last element of the array without
knowing its length:

> y[-length(y)]

®e VvV e Vv e V e

Subscripts as Logical Variables

e Logical condition to find a subset of the values

in a vector:
> yly>6]

e To know the values for z for wich y>6-
> z[y>6]

 Element of y not multiples of three:
> yy%%31=0]

Subscripts with Arrays (l)

e Three-dimensional array containing the numbers 1 to 30, with five rows and three
columns in each two tables:

> A<-array(1:30,c(5,3,2))

> A
b b 1

[.1] [.2] [.3] The numbers enter each table
[1,] 1 6 11 column-wise, from left to right
[2,] 2 7 12 (rows, then columns then tables)
[3.] 3 8 13
[4,] 4 9 14
[5.] 5 10 15
b b 2

[.11 [.2] [.3]
[1,] 16 21 26
2,] 17 22 27
[3.] 18 23 28
[4,] 19 24 29
[5.] 20 25 30

Subscripts with Arrays (ll)

To select columns of A (e.g. second and third):
> A[,2:3,] :Columns are the second (middle) subscript

,1

[.11 [.2]
[1.] 6 11
[2,] 7 12
[3.] 8 13
[4,] 9 14
[5.] 10 15

2

[.11 [.2]
[1,] 21 26
2,1 22 27
[3.] 23 28
[4,] 24 29
[5.] 25 30

Subscripts with Arrays (lil)

e To select columns of A (e.g. second and third) and rows (e.g. two
to four), of only the second table:

> A[2:4,2:3,2] :rows are the first, columns are the second,
and table are the third subscript

[.1]1 [.2]
[1,] 22 27
[2,] 23 28
[3,] 24 29

Lists

e vector: an ordered collection of data of the same type.
>a=c(7,51)

> a[2]

[1] 5

e |ist: an ordered collection of data of arbitrary types.

> doe = list(hame="john",age=28,married=F)

> doeSname

[1] "john*

> doeSage

[1] 28

e Typically, vector elements are accessed by their index (an integer), list elements by their
name (a character string). But both types support both access methods.

Installing, Running, and Interacting with R

Math: Variables:
> 1 + 1 > X <-1
[1] 2 > X
[1] 1
> 1 +1*7 >y = 2
[1] 8 >y
[1] 2
> (1 +1) *7 > 3 -> Z
[1] 14 > 7
[1] 3

> (X ty) *z
[1] 9

Installing, Running, and Interacting with R
Arrays:

> x <- ¢(0,1,2,3,4)
> X
[1] 01 2 3 4

>y <- 1:5
>y

[1] 1 23 45
> 7z <- 1:50
> Z

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
[31] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
[46] 46 47 48 49 50

Installing, Running, and Interacting with R
Math on arrays:

> X <- ¢(0,1,2,3,4)
>y <- 1:5

2 6 12 20

[1] O 2 6 12 20 0O 7 16 27 40 O
2] 12 26 42 60 O 17 36 57 8 0 22
23] 46 72 100 0 27 56 87 120 0 32 66
[34] 102 140 O 37 76 117 160 O 42 86 132
[45] 180 0O 47 96 147 200

==

Functions

> arc <- function(x) 2*asin(sqrt(x))
> arcC (O - 5) The Arcsine Transformation

[1] 1.570796

> x <- ¢(0,1,2,3,4)

> X <- x / 10

> arc(x)

[1] 0.0000000 0.6435011 0.9272952
[4] 1.1592795 1.3694384

arc(Percents)
1.5 2.0 25 3.0
| |

1.0

0.5

0.0
|

0.0 0.2 04 0.6 0.8 1.0

Percents

R Packages

— One of the strengths of R is that the system can easily be
extended. The system allows you to write new functions
and package those functions in a so called 'R package' (or
‘R library'). The R package may also contain other R
objects, for example data sets or documentation. There is
a lively R user community and many R packages have been
written and made available on CRAN for other users. Just
a few examples, there are packages for portfolio
optimization, drawing maps, exporting objects to html,
time series analysis, spatial statistics and the list goes on
and on.

R Packages

— To attach another package to the system you can use the menu or the
library function. Via the menu:

Select the "Packages' menu and select "Load package...', a list of available
packages on your system will be displayed. Select one and click "OK', the
package is now attached to your current R session. Via the library function:

> library(MASS)

> shoes

SA

[1] 13.2 8.2 10.9 14.310.7 6.6 9.5 10.8 8.8 13.3
SB

[1] 14.08.811.214.211.86.49.811.39.313.6

Data Manipulation

Outline

Creating New Variable
Operators

Built-in functions
Control Structures
User Defined Functions
Sorting Data

Merging Data
Aggregating Data
Reshaping Data
Sub-setting Data

Data Type Conversions

Introduction

Once you have access to your data, you will want to
massage it into useful form. This includes creating
new variables (including recoding and renaming
existing variables), sorting and merging datasets,
aggregating data, reshaping data, and subsetting
datasets (including selecting observations that
meet criteria, randomly sampling observation, and
dropping or keeping variables).

http://www.statmethods.net/input/index.html�
http://www.statmethods.net/management/variables.html�
http://www.statmethods.net/management/variables.html�
http://www.statmethods.net/management/sorting.html�
http://www.statmethods.net/management/merging.html�
http://www.statmethods.net/management/aggregate.html�
http://www.statmethods.net/management/reshape.html�
http://www.statmethods.net/management/subset.html�

Introduction

Each of these activities usually involve the use of R's
built-in operators (arithmetic and logical) and
functions (numeric, character, and statistical).
Additionally, you may need to use control
structures (if-then, for, while, switch) in your
programs and/or create your own functions. Finally
you may need to convert variables or datasets from
one type to another (e.g. numeric to character or
matrix to dataframe).

http://www.statmethods.net/management/operators.html�
http://www.statmethods.net/management/functions.html�
http://www.statmethods.net/management/controlstructures.html�
http://www.statmethods.net/management/controlstructures.html�
http://www.statmethods.net/management/userfunctions.html�
http://www.statmethods.net/management/typeconversion.html�

Creating new variables

e Use the assignment operator <- to create new variables. A
wide array of operators and functions are available here.

e # Three examples for doing the same computations

mydataSsum <- mydataSx1 + mydataSx2
mydataSmean <- (mydataSx1 + mydata$x2)/2

attach(mydata)
mydataSsum <- x1 + x2
mydataSmean <- (x1 + x2)/2
detach(mydata)

 mydata <- transform(mydata,

sum =x1 + x2,
mean = (x1 + x2)/2

)

http://www.statmethods.net/management/operators.html�
http://www.statmethods.net/management/functions.html�

Creating new variables

Recoding variables

* In order to recode data, you will probably use one or
more of R's control structures.

 H create 2 age categories
mydataSagecat <- ifelse(mydataSage > 70,
c("older"), c("younger"))
another example: create 3 age categories
attach(mydata)
mydataSagecat[age > 75] <- "Elder"
mydataSagecat[age > 45 & age <= 75] <- "Middle Aged"
mydataSagecat[age <= 45] <- "Young"
detach(mydata)

http://www.statmethods.net/management/controlstructures.html�

Creating new variables

Recoding variables

e In order to recode data, you will probably use one or more of
R's control structures.

* H# create 2 age categories
mydataSagecat <- ifelse(mydataSage > 70,
c("older"), c("younger"))

another example: create 3 age categories
attach(mydata)

mydataSagecat[age > 75] <- "Elder"
mydataSagecat[age > 45 & age <= 75] <- "Middle Aged"
mydataSagecat[age <= 45] <- "Young"

detach(mydata)

http://www.statmethods.net/management/controlstructures.html�

Creating new variables

Renaming variables
* You can rename variables programmatically or interactively.

* #rename interactively
fix(mydata) # results are saved on close

rename programmatically
library(reshape)
mydata <- rename(mydata, c(oldname="newname"))

you can re-enter all the variable names in order

changing the ones you need to change.the limitation
is that you need to enter all of them!
names(mydata) <- ¢("x1","age","y", "ses"

Arithmetic Operators

Operator Description
+ addition
subtraction

* multiplication
/ division
N or ** exponentiation

X %% y modulus (x mod y) 5%%?2 is 1
X %/% Yy Integer division 5%/%2 is 2

Logical Operators

Operator

x|y
X&Y

iSTRUE(X)

Description

less than

less than or equal to
greater than

greater than or equal to
exactly equal to

not equal to

Not X

XORYy

XAND y

test if x is TRUE

Control Structures

R has the standard control structures you would
expect. expr can be multiple (compound)
statements by enclosing them in braces { }. It is
more efficient to use built-in functions rather than
control structures whenever possible.

Control Structures

if-else

if (cond) expr
if (cond) expr1 else expr2

for

for (varin seq) expr
while

while (cond) expr
switch

switch(expr, ...)
ifelse
ifelse(test,yes,no)

Control Structures

* #transpose of a matrix
a poor alternative to built-in t() function

mytrans <- function(x) {
if (tis.matrix(x)) {
warning("argument is not a matrix: returning NA")
return(NA_real)
}
y <- matrix(1, nrow=ncol(x), ncol=nrow(x))
for (i in 1:nrow(x)) {
for (j in 1:ncol(x)) {
yli,il <- x[i,j]
}
}

return(y)

Control Structures

* Hitryit

z <- matrix(1:10, nrow=5, ncol=2)
tz <- mytrans(z)

R built-in functions

Almost everything in R is done through
functions. Here I'm only referring to
numeric and character functions that
are commonly used in creating or
recoding variables.

Note t
page a

nat while the examples on this
pply functions to individual

variab

es, many can be applied to

vectors and matrices as well.

Numeric Functions

Function

abs(x)

sqrt(x)

ceiling(x)

floor(x)

trunc(x)

round(x, digits=n)
signif(x, digits=n)
cos(x), sin(x), tan(x)
log(x)

log10(x)

exp(x)

Description

absolute value

square root

ceiling(3.475) is 4
floor(3.475) is 3

trunc(5.99) is 5

round(3.475, digits=2) is 3.48
signif(3.475, digits=2) is 3.5
also acos(x), cosh(x), acosh(x), etc.
natural logarithm

common logarithm

eNx

Character Functions

Function

substr(x, start=n1, stop=n2)

grep(pattern, x ,
ignore.case=FALSE, fixed=FALSE)

sub(pattern, replacement, X,
ignore.case =FALSE, fixed=FALSE)

strsplit(x, split)

paste(..., sep=""")

toupper(x)

tolower(x)

Description

Extract or replace substrings in a character vector.
X <- "abcdef"

substr(x, 2, 4) is "bcd"

substr(x, 2, 4) <- "22222" is "a222ef"

Search for pattern in x. If fixed =FALSE then pattern is a regular expression. If
fixed=TRUE then pattern is a text string. Returns matching indices.
grep("A", c("b","A","c"), fixed=TRUE) returns 2

Find pattern in x and replace with replacement text. If fixed=FALSE then pattern is
a regular expression.

If fixed = T then pattern is a text string.

sub("\\s",".","Hello There") returns "Hello.There"

Split the elements of character vector x at split.

strsplit("abc”, ") returns 3 element vector "a","b","c"

Concatenate strings after using sep string to seperate them.
paste("x",1:3,sep="") returns c("x1","x2" "x3")
paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3")
paste(""Today is", date())

Uppercase

Lowercase

http://regexlib.com/CheatSheet.aspx�
http://www.ilovejackdaniels.com/regular_expressions_cheat_sheet.pdf�

Stat/Prob Functions

 The following table describes functions related to
probaility distributions. For random number
generators below, you can use set.seed(1234) or

some other integer to create reproducible pseudo-
random numbers.

Function Description

dnorm(x) normal density function (by default m=0 sd=1)
plot standard normal curve
X <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type="l', xlab="Normal Deviate", ylab="Density", yaxs="i")

pnorm(q) cumulative normal probability for g
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

gnorm(p) normal quantile.
value at the p percentile of normal distribution
gnorm(.9) is 1.28 # 90th percentile

rnorm(n, m=0,sd=1) n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
X <- rnorm(50, m=50, sd=10)

dbinom(x, size, prob) binomial distribution where size is the sample size
pbinom(q, size, prob) and prob is the probability of a heads (pi)
gbinom(p, size, prob) # prob of 0 to 5 heads of fair coin out of 10 flips
rbinom(n, size, prob) dbinom(0:5, 10, .5)

prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

dpois(x, lamda) poisson distribution with m=std=lamda

ppois(qg, lamda) #probability of 0,1, or 2 events with lamda=4

gpois(p, lamda) dpois(0:2, 4)

rpois(n, lamda) # probability of at least 3 events with lamda=4
1- ppois(2,4)

dunif(x, min=0, max=1) uniform distribution, follows the same pattern
punif(g, min=0, max=1) as the normal distribution above.

qunif(p, min=0, max=1) #10 uniform random variates

runif(n, min=0, max=1) X <- runif(10)

Function

mean(x, trim=0,
na.rm=FALSE)

sd(x)

median(x)

quantile(x, probs)

range(x)
sum(x)
diff(x, lag=1)
min(x)

max(x)

scale(x, center=TRUE,

scale=TRUE)

Description
mean of object x
trimmed mean, removing any missing values and

5 percent of highest and lowest scores
mx <- mean(x,trim=.05,na.rm=TRUE)

standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute
deviation.

median

quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with
probabilities in [0,1].

30th and 84th percentiles of x

y <- quantile(x, c(.3,.84))

range

sum

lagged differences, with lag indicating which lag to use

minimum

maximum

column center or standardize a matrix.

Other Useful Functions

Function

seq(from , to, by)

rep(x, ntimes)

cut(x, n)

Description

generate a sequence
indices <- seq(1,10,2)
#indicesisc(, 3,5,7,9)

repeat X n times
y <-rep(1:3, 2)
#vyisc(l,2,3,1,2,3)

divide continuous variable in factor with n levels
y <- cut(x, 5)

Sorting

To sort a dataframe in R, use the order() function. By default,
sorting is ASCENDING. Prepend the sorting variable by a
minus sign to indicate DESCENDING order. Here are some
examples.

sorting examples using the mtcars dataset
data(mtcars)

sort by mpg

newdata = mtcars[order(mtcarsSmpg),]

sort by mpg and cyl

newdata <- mtcars[order(mtcarsSmpg, mtcarsScyl),]
#sort by mpg (ascending) and cyl (descending)
newdata <- mtcars[order(mtcarsSmpg, -mtcarsScyl),]

Merging

To merge two dataframes (datasets) horizontally, use the merge
function. In most cases, you join two dataframes by one or
more common key variables (i.e., an inner join).

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country
total <- merge(dataframeA,dataframeB,by=c("ID","Country"))

Merging

ADDING ROWS

To join two dataframes (datasets) vertically, use the rbind
function. The two dataframes must have the same variables,
but they do not have to be in the same order.

total <- rbind(dataframeA, dataframeB)

If dataframeA has variables that dataframeB does not, then either:
Delete the extra variables in dataframeA or
Create the additional variables in dataframeB and set them to NA (missing)

before joining them with rbind.

http://www.statmethods.net/input/missingdata.html�

Aggregating

e Itis relatively easy to collapse data in R using one
or more BY variables and a defined function.

e # aggregate dataframe mtcars by cyl and vs,
returning means
for numeric variables
attach(mtcars)
aggdata <-aggregate(mtcars, by=list(cyl),
FUN=mean, na.rm=TRUE)
print(aggdata)

e OR use apply

Aggregating

When using the aggregate() function, the by
variables must be in a list (even if there is only
one). The function can be built-in or user
provided.

See also:
summarize() in the Hmisc package
summaryBy() in the doBy package

http://cran.r-project.org/web/packages/Hmisc/index.html�
http://cran.r-project.org/web/packages/doBy/index.html�

Data Type Conversion

 Type conversions in R work as you would expect.
For example, adding a character string to a
numeric vector converts all the elements in the
vector to character.

e Use is.foo to test for data type foo. Returns TRUE
or FALSE

Use as.foo to explicitly convert it.

e is.numeric(), is.character(), is.vector(), is.matrix(),
is.data.frame()
as.numeric(), as.character(), as.vector(),
as.matrix(), as.data.frame)

	“R” Programming Language�Tutorial
	Outline
	Why R?
	Installing R
	Tutorials
	Where to find R help and resources on the web
	More Links
	Introduction
	Introduction
	What R does and does not
	Some Useful Functions
	R Warning !
	Getting Help
	Workspace
	R Workspace
	R Workspace
	R Workspace
	R Workspace
	R Workspace
	R Workspace
	Data Input
	Importing From A Comma Delimited Text File
	Importing and exporting data
	Reading Data from Files
	Importing data: caveats
	Keyboard Input
	Keyboard Input
	Exporting Data
	Exporting Data
	Viewing Data
	Viewing Data
	Examining datasets
	Changing the Look of Graphics (I)
	Working with Data
	Selecting Subsets of Data
	Selecting Subsets of Data
	Slide Number 37
	Storing data
	Dataframes
	Dataframes (II)
	Dataframes (III)
	Dataframes (III)
	Selecting Parts of a Dataframe: Subscripts
	Selecting Parts of a Dataframe: Subscripts (II)
	Value Labels
	Value Labels
	Missing Data
	Missing Data
	Missing Data
	Date Values
	Date Values
	Date Values
	Variables, Lists, and Arrays
	Object orientation
	Object orientation
	Object orientation
	Variables
	Variable Labels
	Variable Labels
	Vectors, matrices and arrays
	Vectors, matrices and arrays
	Subscripts: Obtaining Parts of Vectors
	Subscripts as Logical Variables
	Subscripts with Arrays (I)
	Subscripts with Arrays (II)
	Subscripts with Arrays (III)
	Lists
	Installing, Running, and Interacting with R
	Installing, Running, and Interacting with R
	Installing, Running, and Interacting with R
	Functions
	R Packages
	R Packages
	Data Manipulation
	Outline
	Introduction
	Introduction
	Creating new variables
	Creating new variables
	Creating new variables
	Creating new variables
	Arithmetic Operators
	Logical Operators
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	R built-in functions
	Numeric Functions
	Character Functions
	Stat/Prob Functions
	Slide Number 92
	Slide Number 93
	Other Useful Functions
	Sorting
	Merging
	Merging
	Aggregating
	Aggregating
	Data Type Conversion

