
University of Illinois Fall 2012

ECE 313: Problem Set 8: Problems and Solutions
Moments of jointly distributed random variables, minimum mean square

error estimation
Due: Wednesday December 5 at 4 p.m.
Reading: 313 Course Notes Sections 4.8-4.9

1. [Covariance I]
Consider random variables X and Y on the same probability space.

(a) If Var(X + 2Y ) = 40 and Var(X − 2Y ) = 20, what is Cov(X,Y )?
Solution:

Var(X + 2Y ) = Cov(X + 2Y,X + 2Y )
= Var(X) + 4Var(Y ) + 4Cov(X,Y ) = 40

Similarly, Var(X−2Y ) = Cov(X−2Y,X−2Y ) = Var(X)+4Var(Y )−4Cov(X,Y ) = 20.
Taking the difference of the two equations describing Var(X + 2Y ) and Var(X − 2Y )
yields Cov(X,Y ) = 2.5.

(b) In part (a), determine ρX,Y if Var(X) = 2 ·Var(Y ).
Solution: Adding the two equations describing Var(X + 2Y ) and Var(X − 2Y ), we get

2Var(X) + 8Var(Y ) = 60
12Var(Y ) = 60

Hence, Var(Y ) = 5, Var(X) = 10, and

ρX,Y =
Cov(X,Y )√

Var(X)Var(Y )
= 0.3536

2. [Covariance II]
Suppose X and Y are random variables on some probability space.

(a) If Var(X + 2Y ) = Var(X − 2Y ), are X and Y uncorrelated ?
Solution: Expanding each side of Var(X + 2Y ) = Var(X − 2Y ) yields:
Var(X) + 4Cov(X,Y ) + 4Var(Y ) = Var(X) − 4Cov(X,Y ) + 4Var(Y ) implying that
Cov(X,Y ) = 0. Hence, X and Y are uncorrelated.

(b) If Var(X) = Var(Y ), are X and Y uncorrelated?
Solution: No. The condition Var(X) = Var(Y ) does not imply that Cov(X,Y ) = 0.

3. [Covariance III]
Rewrite the expressions below in terms of Var(X), Var(Y ), Var(Z), and Cov(X,Y ).

(a) Cov(3X + 2, 5Y − 1)
Solution: Cov(3X + 2, 5Y − 1) = Cov(3X, 5Y ) = 15Cov(X,Y ).



(b) Cov(2X + 1, X + 5Y − 1).
Solution:

Cov(2X + 1, X + 5Y − 1) = Cov(2X,X + 5Y ) = Cov(2X,X) + Cov(2X, 5Y )
= 2Cov(X,X) + 10Cov(X,Y ) = 2Var(X) + 10Cov(X,Y )

(c) Cov(2X + 3Z, Y + 2Z) where Z is uncorrelated to both X and Y .
Solution:

Cov(2X + 3Z, Y + 2Z) = Cov(2X,Y ) + Cov(2X + 2Z) + Cov(3Z, Y ) + Cov(3Z, 2Z)
= 2Cov(X,Y ) + 4Cov(X,Z) + 3Cov(Z, Y ) + 6Cov(Z,Z)
= 2Cov(X,Y ) + 6Var(Z)

4. [Covariance IV]
Random variables X1 and X2 represent two observations of a signal corrupted by noise. They
have the same mean µ and variance σ2. The signal-to-noise-ratio (SNR) of the observation
X1 or X2 is defined as the ratio SNRX = µ2

σ2 . A system designer chooses the averaging
strategy, whereby she constructs a new random variable S = X1+X2

2 .

(a) Show that the SNR of S is twice that of the individual observations, if X1 and X2 are
uncorrelated.
Solution: In general, for S = X1+X2

2 .

E[S] = µS = E

[
X1 +X2

2

]
= µ

σ2
S =

Var(X1 +X2)
4

=
2σ2 + 2Cov(X1, X2)

4
=
σ2 + Cov(X1, X2)

2

SNRS =
2µ2

σ2 + Cov(X1, X2)

Thus, if X1 and X2 are uncorrelated, SNRS = 2µ2

σ2 = 2SNRX . Thus, averaging im-
proves the SNR by a factor equal to the number of observations being averaged, if the
observations are uncorrelated.

(b) The system designer notices that the averaging strategy is giving SNRS = (1.5)SNRX .
She correctly assumes that the observations X1 and X2 are correlated. Determine the
value of the correlation coefficient ρX1X2 .
Solution: Since Cov(X1, X2) = σ2ρX1,X2 , the formula above for SNRS is equivalent to

SNRS =
2µ2

σ2(1 + ρX1X2)
.

Setting SNRS equal to 1.5µ
2

σ2 yields ρXY = 1
3 .

(c) Under what condition on ρX,Y can the averaging strategy result in an SNRS that is
arbitrarily high?
Solution: SNRS →∞ as ρX1X2 → −1.
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5. [Linear minimum MSE estimation from uncorrelated observations]
Suppose Y is estimated by a linear estimator, L(X1, X2) = a+ bX1 + cX2, such that X1 and
X2 have mean zero and are uncorrelated with each other.

(a) Determine a, b and c to minimize the MSE, E[(Y − (a + bX1 + cX2))2]. Express your
answer in terms of E[Y ], the variances of X1 and X2, and the covariances Cov(Y,X1)
and Cov(Y,X2).
Solution: The MSE can be written as E[((Y − bX1− cX2)− a)2], which is the same as
the MSE for estimation of Y − bX1 − cX2 by the constant a. The optimal choice of a is
E[Y − bX1 − cX2] = E[Y ]. Substituting a = E[Y ], the MSE satisfies

MSE = Var(Y − bX1 − cX2)
= Cov(Y − bX1 − cX2, Y − bX1 − cX2)
= Cov(Y, Y ) + b2Cov(X1, X1)− 2bCov(Y,X1) + c2Cov(X2, X2)− 2cCov(Y,X2)
= Var(Y ) +

(
b2Var(X1)− 2bCov(Y,X1)

)
+
(
c2Var(X2)− 2cCov(Y,X2)

)
. (1)

The MSE is quadratic in b and c and the minimizers are easily found to be b = Cov(Y,X1)

Var(X1)

and c = Cov(Y,X2)

Var(X2)
. Thus, L(X1, X2) = E[Y ] + Cov(Y,X1)

Var(X1)
X1 + Cov(Y,X2)

Var(X2)
X2.

(b) Express the MSE for the estimator found in part (a) in terms of the variances of X1,
X2, and Y and the covariances Cov(Y,X1) and Cov(Y,X2).
Solution: Substituting the values of b and c found into (1) yields

MSE = Var(Y )− Cov(Y,X1)2

Var(X1)
− Cov(Y,X2)2

Var(X2)
.

6. [An estimation problem]
Suppose X and Y have the following joint pdf:

fX,Y (u, v) =

{
8uv

(15)4
u ≥ 0, v ≥ 0, u2 + v2 ≤ (15)2

0 else

(a) Find the constant estimator, δ∗, of Y, with the smallest mean square error (MSE), and
find the MSE.
Solution: We know δ∗ = E[Y ], and the resulting MSE is Var(Y ). We could directly
compute the first and second moments of Y, but it is about the same amount work if fY
is found first, so we find fY . The support of fY is [0,15]. For 0 ≤ v ≤ 15,

fY (v) =
∫ √225−v2

0

8uv
154

du =
4u2v

154

∣∣∣∣
√

225−v2

u=0

=
4v
225

(
1− v2

225

)
Thus,

δ∗ = E[Y ] =
∫ 15

0

4v2

225

(
1− v2

225

)
dv = 8,

and

E[Y 2] =
∫ 15

0

4v3

225

(
1− v2

225

)
dv = 75,

so MSE(using δ∗)=Var(Y ) = 75− 82 = 11.
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(b) Find the unconstrained estimator, g∗(X), of Y based on observing X, with the smallest
MSE, and find the MSE.
Solution: We know g∗(u) = E[Y |X = u]. To compute g∗ we thus need to find fY |X(v|u).
By symmetry, X and Y have the same distribution, so

fX(u) = fY (u) =

{
4u
225

(
1− u2

225

)
u ≥ 0

0 else.

Thus, fY |X(v|u) is well defined for 0 ≤ u ≤ 15. For such u,

fY |X(v|u) =
fX,Y (u, v)
fX(u)

=
{

2v
225−u2 0 ≤ v ≤

√
225− u2

0 else.

That is, for u fixed, the conditional pdf of Y has a triangular shape over the interval[
0,
√

225− u2
]
. Thus, for 0 ≤ u ≤ 15,

g∗(u) =
∫ √225−u2

0

2v2

225− u2
dv =

2
√

225− u2

3
.

To compute the MSE for g∗ we find

E[g∗(X)2] =
∫ 15

0
g∗(u)2fX(u)du =

∫ 15

0

4(225− u2)
9

4u
225

(
1− u2

225

)
du =

200
3
.

Therefore, MSE(using g∗) = E[Y 2]− E[g∗(X)2] = 25
3 = 8.333 . . . .

(c) Find the linear estimator, L∗(X), of Y based on observing X, with the smallest MSE,
and find the MSE. (Hint: You may use the fact E[XY ] = 75π

4 ≈ 58.904, which can be
derived using integration in polar coordinates.)
Solution: Using the hint, Cov(X,Y ) = E[XY ] − E[X]E[Y ] = 75π

4 − 64 ≈ −5.0951.
Thus,

L∗(u) = E[Y ] +
Cov(X,Y )

Var(X)
(u− E[X]) = 8− (0.4632)(u− 8)

and

MSE(using L∗) = Var(Y )− Cov(X,Y )2

Var(X)
= 8.6400

The three estimators are shown in the plot:

.
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