## ECE 313: Problem Set 8: Problems and Solutions

Moments of jointly distributed random variables, minimum mean square error estimation

Due: Wednesday December 5 at 4 p.m.
Reading: 313 Course Notes Sections 4.8-4.9

## 1. [Covariance I]

Consider random variables $X$ and $Y$ on the same probability space.
(a) If $\operatorname{Var}(X+2 Y)=40$ and $\operatorname{Var}(X-2 Y)=20$, what is $\operatorname{Cov}(X, Y)$ ?

## Solution:

$$
\begin{aligned}
\operatorname{Var}(X+2 Y) & =\operatorname{Cov}(X+2 Y, X+2 Y) \\
& =\operatorname{Var}(X)+4 \operatorname{Var}(Y)+4 \operatorname{Cov}(X, Y)=40
\end{aligned}
$$

Similarly, $\operatorname{Var}(X-2 Y)=\operatorname{Cov}(X-2 Y, X-2 Y)=\operatorname{Var}(X)+4 \operatorname{Var}(Y)-4 \operatorname{Cov}(X, Y)=20$. Taking the difference of the two equations describing $\operatorname{Var}(X+2 Y)$ and $\operatorname{Var}(X-2 Y)$ yields $\operatorname{Cov}(X, Y)=2.5$.
(b) In part (a), determine $\rho_{X, Y}$ if $\operatorname{Var}(X)=2 \cdot \operatorname{Var}(Y)$.

Solution: Adding the two equations describing $\operatorname{Var}(X+2 Y)$ and $\operatorname{Var}(X-2 Y)$, we get

$$
\begin{gathered}
2 \operatorname{Var}(X)+8 \operatorname{Var}(Y)=60 \\
12 \operatorname{Var}(Y)=60
\end{gathered}
$$

Hence, $\operatorname{Var}(Y)=5, \operatorname{Var}(X)=10$, and

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=0.3536
$$

## 2. [Covariance II]

Suppose $X$ and $Y$ are random variables on some probability space.
(a) If $\operatorname{Var}(X+2 Y)=\operatorname{Var}(X-2 Y)$, are $X$ and $Y$ uncorrelated?

Solution: Expanding each side of $\operatorname{Var}(X+2 Y)=\operatorname{Var}(X-2 Y)$ yields:
$\operatorname{Var}(X)+4 \operatorname{Cov}(X, Y)+4 \operatorname{Var}(Y)=\operatorname{Var}(X)-4 \operatorname{Cov}(X, Y)+4 \operatorname{Var}(Y)$ implying that $\operatorname{Cov}(X, Y)=0$. Hence, $X$ and $Y$ are uncorrelated.
(b) If $\operatorname{Var}(X)=\operatorname{Var}(Y)$, are $X$ and $Y$ uncorrelated?

Solution: No. The condition $\operatorname{Var}(X)=\operatorname{Var}(Y)$ does not imply that $\operatorname{Cov}(X, Y)=0$.
3. [Covariance III]

Rewrite the expressions below in terms of $\operatorname{Var}(X), \operatorname{Var}(Y), \operatorname{Var}(Z)$, and $\operatorname{Cov}(X, Y)$.
(a) $\operatorname{Cov}(3 X+2,5 Y-1)$

Solution: $\operatorname{Cov}(3 X+2,5 Y-1)=\operatorname{Cov}(3 X, 5 Y)=15 \operatorname{Cov}(X, Y)$.
(b) $\operatorname{Cov}(2 X+1, X+5 Y-1)$.

Solution:

$$
\begin{aligned}
\operatorname{Cov}(2 X+1, X+5 Y-1) & =\operatorname{Cov}(2 X, X+5 Y)=\operatorname{Cov}(2 X, X)+\operatorname{Cov}(2 X, 5 Y) \\
& =2 \operatorname{Cov}(X, X)+10 \operatorname{Cov}(X, Y)=2 \operatorname{Var}(X)+10 \operatorname{Cov}(X, Y)
\end{aligned}
$$

(c) $\operatorname{Cov}(2 X+3 Z, Y+2 Z)$ where $Z$ is uncorrelated to both $X$ and $Y$.

## Solution:

$$
\begin{aligned}
\operatorname{Cov}(2 X+3 Z, Y+2 Z) & =\operatorname{Cov}(2 X, Y)+\operatorname{Cov}(2 X+2 Z)+\operatorname{Cov}(3 Z, Y)+\operatorname{Cov}(3 Z, 2 Z) \\
& =2 \operatorname{Cov}(X, Y)+4 \operatorname{Cov}(X, Z)+3 \operatorname{Cov}(Z, Y)+6 \operatorname{Cov}(Z, Z) \\
& =2 \operatorname{Cov}(X, Y)+6 \operatorname{Var}(Z)
\end{aligned}
$$

## 4. [Covariance IV]

Random variables $X_{1}$ and $X_{2}$ represent two observations of a signal corrupted by noise. They have the same mean $\mu$ and variance $\sigma^{2}$. The signal-to-noise-ratio (SNR) of the observation $X_{1}$ or $X_{2}$ is defined as the ratio $S N R_{X}=\frac{\mu^{2}}{\sigma^{2}}$. A system designer chooses the averaging strategy, whereby she constructs a new random variable $S=\frac{X_{1}+X_{2}}{2}$.
(a) Show that the $S N R$ of $S$ is twice that of the individual observations, if $X_{1}$ and $X_{2}$ are uncorrelated.
Solution: In general, for $S=\frac{X_{1}+X_{2}}{2}$.

$$
\begin{aligned}
E[S] & =\mu_{S}=E\left[\frac{X_{1}+X_{2}}{2}\right]=\mu \\
\sigma_{S}^{2} & =\frac{\operatorname{Var}\left(X_{1}+X_{2}\right)}{4}=\frac{2 \sigma^{2}+2 \operatorname{Cov}\left(X_{1}, X_{2}\right)}{4}=\frac{\sigma^{2}+\operatorname{Cov}\left(X_{1}, X_{2}\right)}{2} \\
S N R_{S} & =\frac{2 \mu^{2}}{\sigma^{2}+\operatorname{Cov}\left(X_{1}, X_{2}\right)}
\end{aligned}
$$

Thus, if $X_{1}$ and $X_{2}$ are uncorrelated, $S N R_{S}=\frac{2 \mu^{2}}{\sigma^{2}}=2 S N R_{X}$. Thus, averaging improves the $S N R$ by a factor equal to the number of observations being averaged, if the observations are uncorrelated.
(b) The system designer notices that the averaging strategy is giving $S N R_{S}=(1.5) S N R_{X}$. She correctly assumes that the observations $X_{1}$ and $X_{2}$ are correlated. Determine the value of the correlation coefficient $\rho_{X_{1} X_{2}}$.
Solution: Since $\operatorname{Cov}\left(X_{1}, X_{2}\right)=\sigma^{2} \rho_{X_{1}, X_{2}}$, the formula above for $S N R_{S}$ is equivalent to

$$
S N R_{S}=\frac{2 \mu^{2}}{\sigma^{2}\left(1+\rho_{X_{1} X_{2}}\right)}
$$

Setting $S N R_{S}$ equal to $1.5 \frac{\mu^{2}}{\sigma^{2}}$ yields $\rho_{X Y}=\frac{1}{3}$.
(c) Under what condition on $\rho_{X, Y}$ can the averaging strategy result in an $S N R_{S}$ that is arbitrarily high?
Solution: $S N R_{S} \rightarrow \infty$ as $\rho_{X_{1} X_{2}} \rightarrow-1$.

## 5. [Linear minimum MSE estimation from uncorrelated observations]

Suppose $Y$ is estimated by a linear estimator, $L\left(X_{1}, X_{2}\right)=a+b X_{1}+c X_{2}$, such that $X_{1}$ and $X_{2}$ have mean zero and are uncorrelated with each other.
(a) Determine $a, b$ and $c$ to minimize the MSE, $E\left[\left(Y-\left(a+b X_{1}+c X_{2}\right)\right)^{2}\right]$. Express your answer in terms of $E[Y]$, the variances of $X_{1}$ and $X_{2}$, and the covariances $\operatorname{Cov}\left(Y, X_{1}\right)$ and $\operatorname{Cov}\left(Y, X_{2}\right)$.
Solution: The MSE can be written as $E\left[\left(\left(Y-b X_{1}-c X_{2}\right)-a\right)^{2}\right]$, which is the same as the MSE for estimation of $Y-b X_{1}-c X_{2}$ by the constant $a$. The optimal choice of $a$ is $E\left[Y-b X_{1}-c X_{2}\right]=E[Y]$. Substituting $a=E[Y]$, the MSE satisfies

$$
\begin{align*}
\mathrm{MSE} & =\operatorname{Var}\left(Y-b X_{1}-c X_{2}\right) \\
& =\operatorname{Cov}\left(Y-b X_{1}-c X_{2}, Y-b X_{1}-c X_{2}\right) \\
& =\operatorname{Cov}(Y, Y)+b^{2} \operatorname{Cov}\left(X_{1}, X_{1}\right)-2 b \operatorname{Cov}\left(Y, X_{1}\right)+c^{2} \operatorname{Cov}\left(X_{2}, X_{2}\right)-2 c \operatorname{Cov}\left(Y, X_{2}\right) \\
& =\operatorname{Var}(Y)+\left(b^{2} \operatorname{Var}\left(X_{1}\right)-2 b \operatorname{Cov}\left(Y, X_{1}\right)\right)+\left(c^{2} \operatorname{Var}\left(X_{2}\right)-2 c \operatorname{Cov}\left(Y, X_{2}\right)\right) . \tag{1}
\end{align*}
$$

The MSE is quadratic in $b$ and $c$ and the minimizers are easily found to be $b=\frac{\operatorname{Cov}\left(Y, X_{1}\right)}{\operatorname{Var}\left(X_{1}\right)}$ and $c=\frac{\operatorname{Cov}\left(Y, X_{2}\right)}{\operatorname{Var}\left(X_{2}\right)}$. Thus, $L\left(X_{1}, X_{2}\right)=E[Y]+\frac{\operatorname{Cov}\left(Y, X_{1}\right)}{\operatorname{Var}\left(X_{1}\right)} X_{1}+\frac{\operatorname{Cov}\left(Y, X_{2}\right)}{\operatorname{Var}\left(X_{2}\right)} X_{2}$.
(b) Express the MSE for the estimator found in part (a) in terms of the variances of $X_{1}$, $X_{2}$, and $Y$ and the covariances $\operatorname{Cov}\left(Y, X_{1}\right)$ and $\operatorname{Cov}\left(Y, X_{2}\right)$.
Solution: Substituting the values of $b$ and $c$ found into (1) yields

$$
\operatorname{MSE}=\operatorname{Var}(Y)-\frac{\operatorname{Cov}\left(Y, X_{1}\right)^{2}}{\operatorname{Var}\left(X_{1}\right)}-\frac{\operatorname{Cov}\left(Y, X_{2}\right)^{2}}{\operatorname{Var}\left(X_{2}\right)} .
$$

## 6. [An estimation problem]

Suppose $X$ and $Y$ have the following joint pdf:

$$
f_{X, Y}(u, v)=\left\{\begin{array}{cl}
\frac{8 u v}{(15)^{4}} & u \geq 0, v \geq 0, u^{2}+v^{2} \leq(15)^{2} \\
0 & \text { else }
\end{array}\right.
$$

(a) Find the constant estimator, $\delta^{*}$, of $Y$, with the smallest mean square error (MSE), and find the MSE.
Solution: We know $\delta^{*}=E[Y]$, and the resulting MSE is $\operatorname{Var}(Y)$. We could directly compute the first and second moments of $Y$, but it is about the same amount work if $f_{Y}$ is found first, so we find $f_{Y}$. The support of $f_{Y}$ is $[0,15]$. For $0 \leq v \leq 15$,

$$
f_{Y}(v)=\int_{0}^{\sqrt{225-v^{2}}} \frac{8 u v}{15^{4}} d u=\left.\frac{4 u^{2} v}{15^{4}}\right|_{u=0} ^{\sqrt{225-v^{2}}}=\frac{4 v}{225}\left(1-\frac{v^{2}}{225}\right)
$$

Thus,

$$
\delta^{*}=E[Y]=\int_{0}^{15} \frac{4 v^{2}}{225}\left(1-\frac{v^{2}}{225}\right) d v=8
$$

and

$$
E\left[Y^{2}\right]=\int_{0}^{15} \frac{4 v^{3}}{225}\left(1-\frac{v^{2}}{225}\right) d v=75
$$

so $\operatorname{MSE}\left(\operatorname{using} \delta^{*}\right)=\operatorname{Var}(Y)=75-8^{2}=11$.
(b) Find the unconstrained estimator, $g^{*}(X)$, of $Y$ based on observing $X$, with the smallest MSE, and find the MSE.
Solution: We know $g^{*}(u)=E[Y \mid X=u]$. To compute $g^{*}$ we thus need to find $f_{Y \mid X}(v \mid u)$. By symmetry, $X$ and $Y$ have the same distribution, so

$$
f_{X}(u)=f_{Y}(u)=\left\{\begin{array}{cl}
\frac{4 u}{225}\left(1-\frac{u^{2}}{225}\right) & u \geq 0 \\
0 & \text { else. }
\end{array}\right.
$$

Thus, $f_{Y \mid X}(v \mid u)$ is well defined for $0 \leq u \leq 15$. For such $u$,

$$
f_{Y \mid X}(v \mid u)=\frac{f_{X, Y}(u, v)}{f_{X}(u)}=\left\{\begin{array}{cl}
\frac{2 v}{225-u^{2}} & 0 \leq v \leq \sqrt{225-u^{2}} \\
0 & \text { else }
\end{array}\right.
$$

That is, for $u$ fixed, the conditional pdf of $Y$ has a triangular shape over the interval $\left[0, \sqrt{225-u^{2}}\right]$. Thus, for $0 \leq u \leq 15$,

$$
g^{*}(u)=\int_{0}^{\sqrt{225-u^{2}}} \frac{2 v^{2}}{225-u^{2}} d v=\frac{2 \sqrt{225-u^{2}}}{3}
$$

To compute the MSE for $g^{*}$ we find

$$
E\left[g^{*}(X)^{2}\right]=\int_{0}^{15} g^{*}(u)^{2} f_{X}(u) d u=\int_{0}^{15} \frac{4\left(225-u^{2}\right)}{9} \frac{4 u}{225}\left(1-\frac{u^{2}}{225}\right) d u=\frac{200}{3} .
$$

Therefore, $\operatorname{MSE}\left(\right.$ using $\left.g^{*}\right)=E\left[Y^{2}\right]-E\left[g^{*}(X)^{2}\right]=\frac{25}{3}=8.333 \ldots$.
(c) Find the linear estimator, $L^{*}(X)$, of $Y$ based on observing $X$, with the smallest MSE, and find the MSE. (Hint: You may use the fact $E[X Y]=\frac{75 \pi}{4} \approx 58.904$, which can be derived using integration in polar coordinates.)
Solution: Using the hint, $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=\frac{75 \pi}{4}-64 \approx-5.0951$. Thus,

$$
L^{*}(u)=E[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(u-E[X])=8-(0.4632)(u-8)
$$

and

$$
\operatorname{MSE}\left(\operatorname{using} L^{*}\right)=\operatorname{Var}(Y)-\frac{\operatorname{Cov}(X, Y)^{2}}{\operatorname{Var}(X)}=8.6400
$$

The three estimators are shown in the plot:


