ECE 313: Problem Set 12 Moments of jointly distributed random variables, minimum mean square error estimation Due: Wednesday December 5 at 4 p.m. Reading: 313 Course Notes Sections 4.8-4.9 ### 1. [Covariance I] Consider random variables X and Y on the same probability space. - (a) If Var(X + 2Y) = 40 and Var(X 2Y) = 20, what is Cov(X, Y)? - (b) In part (a), determine $\rho_{X,Y}$ if $Var(X) = 2 \cdot Var(Y)$. ## 2. [Covariance II] Suppose X and Y are random variables on some probability space. - (a) If Var(X + 2Y) = Var(X 2Y), are X and Y uncorrelated? - (b) If Var(X) = Var(Y), are X and Y uncorrelated? ## 3. [Covariance III] Rewrite the expressions below in terms of Var(X), Var(Y), Var(Z), and Cov(X,Y). - (a) Cov(3X + 2, 5Y 1) - (b) Cov(2X + 1, X + 5Y 1). - (c) Cov(2X + 3Z, Y + 2Z) where Z is uncorrelated to both X and Y. ## 4. [Covariance IV] Random variables X_1 and X_2 represent two observations of a signal corrupted by noise. They have the same mean μ and variance σ^2 . The *signal-to-noise-ratio* (SNR) of the observation X_1 or X_2 is defined as the ratio $SNR_X = \frac{\mu^2}{\sigma^2}$. A system designer chooses the averaging strategy, whereby she constructs a new random variable $S = \frac{X_1 + X_2}{2}$. - (a) Show that the SNR of S is twice that of the individual observations, if X_1 and X_2 are uncorrelated. - (b) The system designer notices that the averaging strategy is giving $SNR_S = (1.5)SNR_X$. She correctly assumes that the observations X_1 and X_2 are correlated. Determine the value of the correlation coefficient $\rho_{X_1X_2}$. - (c) Under what condition on $\rho_{X,Y}$ can the averaging strategy result in an SNR_S that is arbitrarily high? ### 5. [Linear minimum MSE estimation from uncorrelated observations] Suppose Y is estimated by a linear estimator, $L(X_1, X_2) = a + bX_1 + cX_2$, such that X_1 and X_2 have mean zero and are uncorrelated with each other. (a) Determine a, b and c to minimize the MSE, $E[(Y - (a + bX_1 + cX_2))^2]$. Express your answer in terms of E[Y], the variances of X_1 and X_2 , and the covariances $Cov(Y, X_1)$ and $Cov(Y, X_2)$. (b) Express the MSE for the estimator found in part (a) in terms of the variances of X_1 , X_2 , and Y and the covariances $Cov(Y, X_1)$ and $Cov(Y, X_2)$. ## 6. [An estimation problem] Suppose X and Y have the following joint pdf: $$f_{X,Y}(u,v) = \begin{cases} \frac{8uv}{(15)^4} & u \ge 0, v \ge 0, u^2 + v^2 \le (15)^2\\ 0 & \text{else} \end{cases}$$ - (a) Find the constant estimator, δ^* , of Y, with the smallest mean square error (MSE), and find the MSE. - (b) Find the unconstrained estimator, $g^*(X)$, of Y based on observing X, with the smallest MSE, and find the MSE. - (c) Find the linear estimator, $L^*(X)$, of Y based on observing X, with the smallest MSE, and find the MSE. (Hint: You may use the fact $E[XY] = \frac{75\pi}{4} \approx 58.904$, which can be derived using integration in polar coordinates.)