ECE 313: Final Exam

Friday, December 10, 2011, 8:00 a.m. - 11:00 a.m.
Room 151 Everitt Lab \& Room 149 National Soybean Research Center

1. (a) $P(S)=0.36, P(A \mid S)=0.22, P(A)=0.30$. $P(A S)=(0.22)(0.36)=0.0792$.
(b) $P(S \mid A)=P(A S) / P(A)=0.0792 / 0.3=0.264$
2.

$$
\begin{aligned}
P\left\{(X+Y)^{2}<9\right\} & =P\{-3<X+Y<3\}=P\left\{\frac{-3-1}{2}<\frac{X+Y-1}{2}<\frac{3-1}{2}\right\} \\
& =\Phi(1)-\Phi(-2)=\Phi(1)+\Phi(2)-1
\end{aligned}
$$

3. X and Y are jointly Gaussian so that Z and X are jointly Gaussian, so the minimum MSE estimator is linear.

$$
\begin{aligned}
g^{*}(Z) & =L^{*}(Z)=\mu_{X}+\frac{\operatorname{Cov}(X, X+Y)}{\operatorname{Var}(X+Y)}\left(Z-\mu_{X}-\mu_{Y}\right) \\
& =\mu_{X}+\frac{\operatorname{Var}(X)}{\operatorname{Var}(X)+\operatorname{Var}(Y)}\left(Z-\mu_{X}-\mu_{Y}\right) \\
& =2+\frac{0.5}{2.5}(Z-2)=2+\frac{Z-2}{5}
\end{aligned}
$$

4. (a) The probability mass function $p_{X}(k)$ for $k=0,1,2$ is given by:

$$
\begin{aligned}
& p_{X}(0)=P\{\text { second ball is white }\}=\left(\frac{5}{8}\right)\left(\frac{6}{10}\right)=\frac{3}{8} \\
& p_{X}(1)=P\{\text { second ball is red }\}=\left(\frac{5}{8}\right)\left(\frac{4}{10}\right)+\left(\frac{3}{8}\right)\left(\frac{6}{10}\right)=\frac{19}{40} \\
& p_{X}(2)=P\{\text { second ball is black }\}=\left(\frac{3}{8}\right)\left(\frac{4}{10}\right)=\frac{3}{20}
\end{aligned}
$$

Let H_{0} be the hypothesis the first ball is white and H_{1} be the hypothesis the first ball is black.
(b) If $X=0$ then $\widehat{H}_{M L}=H_{0}$ because $P\left(X=0 \mid H_{0}\right)=0.6>0=P\left(X=0 \mid H_{1}\right)$.

If $X=1$ then $\widehat{H}_{M L}=H_{1}$ because $P\left(X=1 \mid H_{0}\right)=0.4<0.6=P\left(X=1 \mid H_{1}\right)$.
If $X=2$ then $\widehat{H}_{M L}=H_{1}$ because $P\left(X=2 \mid H_{0}\right)=0<0.4=P\left(X=2 \mid H_{1}\right)$. Equivalently, the likelihood ratio function is given by

$$
\Lambda(k)=\left\{\begin{array}{cl}
0 & k=0 \\
1.5 & k=1 \\
+\infty & k=2
\end{array}\right.
$$

and the ML rule decides in favor of H_{1} if $\Lambda(k) \geq 1$, or equivalently, if $k \in\{1,2\}$. Thus, the ML rule is given by:

X	$\widehat{H}_{M L}$
0	H_{0}
1	H_{1}
2	H_{1}

(c) The mechanism used to determine which hypothesis is really true in the first place is the drawing from the grey bucket; H_{0} has prior probability $\pi_{0}=\frac{5}{8}$ and H_{1} has prior probability $\pi_{1}=\frac{3}{8}$. Since the MAP rule is the likelihood ratio test with threshold $\tau=\frac{\pi_{0}}{\pi_{1}}=\frac{5}{3}$, in view of the expression for Λ above, the MAP rule declares H_{1} is true for $X=2$, and declares H_{0} otherwise. Thus, the MAP rule is given by

X	$\widehat{H}_{M A P}$
0	H_{0}
1	H_{0}
2	H_{1}

5. (a) Network fails if links 1 and 2 both fail, or if link 3 fails. Thus, $F=\left(F_{1} F_{2}\right) \cup F_{3}$. Hence,

$$
\begin{aligned}
P(F) & =P\left(\left(F_{1} F_{2}\right) \cup F_{3}\right) \\
& =P\left(F_{1} F_{2}\right)+P\left(F_{3}\right)-P\left(F_{1} F_{2} F_{3}\right) \\
& =p_{1} p_{2}+p_{3}-p_{1} p_{2} p_{3}
\end{aligned}
$$

(b) The pmf of network capacity C is given by:

$$
\begin{aligned}
p_{C}(0) & =P\{F\}=\frac{1}{4}+\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)-\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)=\frac{17}{32} \\
p_{C}(10) & =P\left(F_{1}^{c} F_{2} F_{3}^{c}\right)=\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)=\frac{9}{32} \\
p_{C}(20) & =P\left(F_{1} F_{2}^{c} F_{3}^{c}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{32} \\
p_{C}(30) & =P\left(F_{1}^{c} F_{2}^{c} F_{3}^{c}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{32}
\end{aligned}
$$

Check: $\sum_{k} p_{C}(k)=1$.
(c) The lifetime, T, of the network satisfies

$$
\begin{aligned}
1-F_{T}(t)=P\{T>t\} & =P\left(\left\{T_{1}>t\right\} \cup\left\{T_{2}>t\right\}\right) \\
& =P\left\{T_{1}>t\right\}+P\left\{T_{2}>t\right\}-P\left(\left\{T_{1}>t\right\}\left\{T_{2}>t\right\}\right) \\
& =e^{-\lambda t}+e^{-\lambda t}-e^{-2 \lambda t} \\
& =2 e^{-\lambda t}-e^{-2 \lambda t}
\end{aligned}
$$

Taking the derivative of both sides; $f_{T}(t)=2 \lambda\left(e^{-\lambda t}-e^{-2 \lambda t}\right)$. Hence,

$$
h_{T}(t)=\frac{2 \lambda\left(e^{-\lambda t}-e^{-2 \lambda t}\right)}{2 e^{-\lambda t}-e^{-2 \lambda t}}=\frac{2 \lambda\left(1-e^{-2 \lambda t}\right)}{2-e^{-\lambda t}}
$$

(d) Let T represent the lifetime of the network consisting of nodes B and C. Then,

$$
\begin{aligned}
1-F_{T}(t)=P\{T>t\} & =P\left(\left\{T_{1}>t\right\}\left\{T_{2}>t\right\}\right) \\
& =P\left\{T_{1}>t\right\} P\left\{T_{2}>t\right\}=e^{-\lambda t} e^{-\lambda t}=e^{-2 \lambda t}
\end{aligned}
$$

Thus, $f_{T}(t)=2 \lambda e^{-2 \lambda t}$ (i.e. T is exponentially distributed with parameter 2λ) and

$$
h_{T}(t)=\frac{2 \lambda e^{-2 \lambda t}}{e^{-2 \lambda t}}=2 \lambda
$$

6. (a) $\frac{\binom{5}{2}}{\binom{7}{4}}=\frac{\binom{5}{2}}{\binom{7}{3}}=\frac{5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 7 \cdot 6 \cdot 5}=\frac{2}{7}$
(b) $\frac{2 \cdot 2 \cdot 3}{\binom{7}{4}}=\frac{12}{\binom{7}{3}}=\frac{12 \cdot 3 \cdot 2}{7 \cdot 6 \cdot 5}=\frac{12}{35}$
(c) $\frac{1}{\binom{5}{2}}=\frac{1}{10}$
7. (a) $E[X+2 Y+3 Z+4]=E[X]+2 E[Y]+3 E[Z]+4=28$.
(b) $\operatorname{Var}(X+2 Y+3 Z+4)=\operatorname{Var}(X)+2^{2} \operatorname{Var}(Y)+3^{2} \operatorname{Var}(Z)=(14)(9)=126$.
(c) $\operatorname{Cov}(X+2 Y, 3 Z+4)=0$.
(d) $E[X+Y Z]=E[X]+E[Y] E[Z]=20$.
(e) $E\left[X^{2}\right]=E[X]^{2}+\operatorname{Var}(X)=25 ; E\left[(X Y)^{2}\right]=E\left[X^{2}\right] E\left[Y^{2}\right]=625$.
(f) $E[X Y]=E[X] E[Y]=16 ; \operatorname{Var}(X Y)=E\left[(X Y)^{2}\right]-E[X Y]^{2}=625-256=369$.
8. (a) $P\{Z \leq 0.5\}=P\left\{Y \leq(0.5) X^{2}\right\}=\int_{0}^{1}(0.5) u^{2} d u=\frac{1}{6}$.

(b) $P\{Z \leq 4\}=P\left\{Y \leq 4 X^{2}\right\}=\int_{0}^{0.5} 4 u^{2} d u+0.5=\frac{2}{3}$.

9. (a) False, False, True, True
(b) True, True, False, True
(c) True, True
