1. [40 points] A store in the Paynless Shoe Sores chain has 13 different pairs of shoes in a barrel at the door. Suppose that two shoes are picked at random from the barrel. Note that this is sampling without replacement.

(a) [18 points] What is the probability of getting a matching pair of shoes? What is the probability of getting two left shoes? What is the probability of getting a left shoe and a right shoe but not a matching pair of shoes?

(b) [6 points] Two more shoes are picked at random from the barrel without replacing the first two shoes picked back in the barrel. What is the probability that these two shoes are a matching pair of shoes?

(c) [8 points] What is the probability that there is at least one matching pair of shoes in the four that have been picked?

(d) [8 points] Given that there are no matching pairs of shoes in the four that have been picked, what is the (conditional) probability that all four shoes are left shoes?

2. [20 points] Dilbert has three coins in his pocket, two of which are fair, and one of which is biased with \(P(\text{Heads}) = \frac{3}{4} \).

(a) [5 points] If Dilbert picks two coins out of his pocket what is the probability that he did not pick the biased coin?

(b) [15 points] If Dilbert picks two coins out of his pocket, tosses each one once, and observes a Head and a Tail, what is the (conditional) probability that he did not pick the biased coin?

3. [25 points] Each box of Cornies, the breakfast of silver medalists, contains a picture of either Britney Spears or Paris Hilton. The purchase of each box of Cornies can be regarded as an independent trial of an experiment on which events \(S \) and \(H \) occur with probabilities \(\frac{1}{4} \) and \(\frac{3}{4} \) respectively.

(a) [20 points] Let \(X \) denote the number of boxes of Cornies purchased till the experimenter has acquired at least one picture of each woman. What is \(P\{X = k\} \) for \(k \geq 2 \)? What is \(E[X] \)?

(b) [5 points] Let \(Y \) denote the number of boxes of Cornies purchased till the experimenter has acquired at least two pictures of each woman. What is \(P\{Y = 4\} \)?

4. [15 points]

(a) [9 points] If \(X \) is a binomial random variable with parameters \((4, \frac{1}{3}) \), what are the mean and variance of the random variable \(2 + 3X \)?

(b) [6 points] Let \(Y \) be a geometric random variable with parameter \(p \) where the value of \(p \) is unknown. It is observed that \(\{Y = k\} \). What is the maximum likelihood estimate \(\hat{p}_{\text{ML}} \) of the parameter \(p \)?