ECE 413: Hour Exam II

Monday November 13, 2006
7:00 p.m. - 8:00 p.m.
119 Materials Science Building

1. [18 points; $\mathbf{6}$ points per part] Let A, B, and C denote events such that

$$
P(A)=\frac{1}{2}, \quad P(B)=\frac{1}{4}, \quad P(C)=\frac{2}{3}, \quad \text { and } \quad P(B \mid C)=\frac{1}{6} .
$$

Suppose that A and B are mutually exclusive events, and that A and C are mutually independent events. Find
(a) the probability that at least one of the events A, B, and C occurs,
(b) the probability that at least two of the events A, B, and C occur,
(c) the probability that C did not occur given that exactly one of A and B^{c} occurred.
2. [$\mathbf{3 0}$ points] A coin is tossed repeatedly (independent trials) until a Head is observed for the first time. \mathcal{X} denotes the number of trials needed to observe the first Head. The two hypotheses are

- $\mathrm{H}_{1}: \mathcal{X} \sim \operatorname{Geometric}\left(p_{1}\right)$
- $\mathrm{H}_{0}: \mathcal{X} \sim \operatorname{Geometric}\left(p_{0}\right)$
where $p_{1}<p_{0}$.
(a) [12 points] The maximum-likelihood decision rule can be stated as
"Decide that H_{1} is the true hypothesis if $\mathcal{X} ? g\left(p_{0}, p_{1}\right)$ "
where? is either $<$ or $>$, and $g\left(p_{0}, p_{1}\right)$ is a function that you are asked to find.
(b) [18 points] Let π_{0} and $\pi_{1}=1-\pi_{0}$ respectively denote the a priori probabilities of hypotheses H_{0} and H_{1} and assume that $0<\pi_{0}<1$.
For what values of π_{0} (if any) does the minimum-error-probability decision rule always choose hypothesis H_{1} regardless of the value of the observation \mathcal{X} ?
For what values of π_{0} (if any) does the minimum-error-probability decision rule always choose hypothesis H_{0} regardless of the value of the observation \mathcal{X} ?

3. [36 points]
(a) [12 points] \mathcal{X} denotes a random variable with probability density function

$$
f_{\mathcal{X}}(u)= \begin{cases}a+(b-a) u, & 0 \leq u \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Given that $\mathrm{E}[\mathcal{X}]=\frac{2}{3}$, what is $P\left\{\mathcal{X}<\frac{1}{2}\right\}$?
(b) [24 points $] \mathcal{Y}$ denotes a random variable with probability density function

$$
f_{\mathcal{Y}}(v)=\left\{\begin{array}{lr}
1+v, & -1 \leq v \leq 0 \\
v, & 0<v \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find $P\left\{|\mathcal{Y}|<\frac{1}{2}\right\}, P\left\{\mathcal{Y}>0 \left\lvert\, \mathcal{Y}<\frac{1}{2}\right.\right\}$, and $\mathrm{E}[\mathcal{Y}]$.
4. [16 points] \mathcal{X} is a Gaussian random variable (mean 60 , variance 400) that models the average daily temperature (in ${ }^{\circ} \mathrm{F}$) in a certain city.
(a) What is the probability that the temperature is below $0^{\circ} \mathrm{F}$?
(b) What is the probability that the temperature is below freezing $\left(32^{\circ} \mathrm{F}\right)$ given that it is above $0^{\circ} \mathrm{F}$? You may leave your answer as the ratio of two integers

