University of Illinois

ECE 413: Final Examination 3 hours

1. A, B, and C are independent events of probabilities $0.3,0.4$ and 0.5 respectively. Find $P(A \cup(B \cap C))$ and $P(A \cup B \mid B \oplus C)$.
2. \mathcal{X} denotes a Poisson random variable with parameter $\ln (3)$. Find the numerical values of the mean and variance of $\mathcal{Y}=\cos (\pi \mathcal{X})$.
3. \mathcal{X} denotes a continuous random variable with pdf $f_{\mathcal{X}}(u)$ satisfying $f_{\mathcal{X}}(u)=f_{\mathcal{X}}(-u)$ for all $u,-\infty<$ $u<\infty$. Suppose that $\operatorname{var}(\mathcal{X})=9$. Let $\mathcal{Y}=|\mathcal{X}|$ and $\mathcal{Z}=-\mathcal{X}$, and consider the statements below for all random variables satisfying these conditions.
Mark ALWAYS if the statement is true for all such random variables; mark NEVER if the statement is false for all such random variables; and mark MAYBE if the statement is true for some such random variables but not all such random variables.
ALWAYS NEVER MAYBE

$$
\begin{aligned}
& P\{\mathcal{X}>\alpha\}=F_{\mathcal{X}}(-\alpha) \text { for all } \alpha,-\infty<\alpha<\infty . \\
& F_{\mathcal{Y}}(v)=2 F_{\mathcal{X}}(v)-1 \text { for } v \geq 0, \text { and } 0 \text { for } v<0 . \\
& F_{\mathcal{Z}}(w)=F_{\mathcal{X}}(-w) \text { for all } w,-\infty<w<\infty \\
& f_{\mathcal{Z}}(w)=f_{\mathcal{X}}(-w) \text { for all } w,-\infty<w<\infty . \\
& \mathrm{E}\left[\mathcal{Y}^{2}\right]=9 . \\
& \mathrm{E}[\mathcal{Y}]=3 . \\
& \operatorname{var}(\mathcal{Y})<9 . \\
& \operatorname{var}(\mathcal{Y})<8 . \\
& \mathrm{E}[\mathcal{X} \mathcal{Y}]=0 . \\
& \mathcal{X} \text { and } \mathcal{Y} \text { are uncorrelated random variables. } \\
& \mathcal{X} \text { and } \mathcal{Y} \text { are independent random variables. } \\
& F_{\mathcal{X}}(6) \geq \frac{7}{8}=0.8750 . \\
& F_{\mathcal{X}}(6) \geq 0.9772 .
\end{aligned}
$$

4. A radio-frequency signal is either a radar echo (hypothesis H_{1}) or ambient noise (hypothesis H_{0}). The phase of the signal is modeled as a continuous random variable \mathcal{X} whose pdf is as follows:

- When H_{0} is true, \mathcal{X} has pdf $f_{0}(u)= \begin{cases}\frac{1}{2 \pi}, & -\pi<u<\pi, \\ 0, & \text { elsewhere } .\end{cases}$
- When H_{1} is true, \mathcal{X} has pdf $f_{1}(u)= \begin{cases}\frac{1}{2 \pi}(1+\cos u), & -\pi<u<\pi, \\ 0, & \text { elsewhere. }\end{cases}$

The radar receiver measures \mathcal{X} and decides which hypothesis is true.
(a) Suppose that the maximum-likelihood decision rule is being used. What value(s) of \mathcal{X} result in a decision in favor of H_{1} ?
(b) Find the false alarm probability P_{FA} and the missed detection or false dismissal probability P_{MD} of the maximum-likelihood decision rule.
(c) Now suppose that $P\left(\mathrm{H}_{0}\right)=\pi_{0}=\frac{1}{3}, P\left(\mathrm{H}_{1}\right)=\pi_{1}=\frac{2}{3}$. What is the average error probability \bar{P}_{e} of the maximum a posteriori probability (MAP) (that is, minimum-error-probability or Bayesian) decision rule?
(d) For what values, if any, of $\pi_{0}, 0<\pi_{0}<1$ does the MAP rule always decide in favor of H_{0} regardless of the value of \mathcal{X} ?
5. A professor breaks the chalk piece with which he is writing on the blackboard at random times that can be modeled as arrivals in a Poisson process with arrival rate $\lambda=0.1$ per minute.
(a) What is the expected length of time between two successive chalk breaks?
(b) What is the average number of times that the professor breaks the chalk during a 50 minute lecture?
(c) Given that the professor broke 6 chalk pieces in 50 minutes, what is the average number of pieces he broke in the first 25 minutes?
6. The random point $(\mathcal{X}, \mathcal{Y})$ is uniformly distributed on the interior of a square of side 2 centered at the origin. Consider a circle of radius $r<1$ centered at $(\mathcal{X}, \mathcal{Y})$, and let $\mathcal{Z} \in\{0,1,2\}$ denote the number of sides of the square that are crossed by the circle, as illustrated in the figure below.

If $\mathrm{E}[\mathcal{Z}]=\frac{3}{2}$, what is the value of r ?
7. The joint pdf of \mathcal{X} and \mathcal{Y} is given by

$$
f_{\mathcal{X}, \mathcal{Y}}(u, v)= \begin{cases}2 u, & 0<u<1,0<v<1 \\ 0, & \text { elsewhere }\end{cases}
$$

(a) Are \mathcal{X} and \mathcal{Y} independent random variables? SHOW YOUR WORK.
(b) Find the pdf of $\mathcal{Z}=\mathcal{X} \mathcal{Y}$. Be sure to specify the value of $f_{\mathcal{Z}}(\alpha)$ for all $\alpha,-\infty<\alpha<\infty$.
8. The jointly Gaussian random variables \mathcal{X} and \mathcal{Y} have means 0 and 14 respectively, variances 4 and 16 respectively, and correlation coefficient $\frac{1}{16}$.
(a) Find the pdf of the random variable $\mathcal{Z}=5 \mathcal{X}+\mathcal{Y}$. Be sure to specify the value of $f_{\mathcal{Z}}(\alpha)$ for all $\alpha,-\infty<\alpha<\infty$.
(b) Find the numerical value of $P\{\mathcal{Y}>3 \mathcal{X}\}$.

