University of Illinois

ECE 413: Final Examination 3 hours

- **1**. A, B, and C are independent events of probabilities 0.3, 0.4 and 0.5 respectively. Find $P(A \cup (B \cap C))$ and $P(A \cup B | B \oplus C)$.
- 2. \mathcal{X} denotes a Poisson random variable with parameter ln(3). Find the numerical values of the mean and variance of $\mathcal{Y} = \cos(\pi \mathcal{X})$.
- **3**. \mathcal{X} denotes a continuous random variable with pdf $f_{\mathcal{X}}(u)$ satisfying $f_{\mathcal{X}}(u) = f_{\mathcal{X}}(-u)$ for all $u, -\infty < u < \infty$. Suppose that $\operatorname{var}(\mathcal{X}) = 9$. Let $\mathcal{Y} = |\mathcal{X}|$ and $\mathcal{Z} = -\mathcal{X}$, and consider the statements below for all random variables satisfying these conditions.

Mark ALWAYS if the statement is *true for all* such random variables; mark NEVER if the statement is *false for all* such random variables; and mark MAYBE if the statement is *true for some* such random variables *but not all* such random variables. ALWAYS NEVER MAYBE

 $P\{\mathcal{X} > \alpha\} = F_{\mathcal{X}}(-\alpha) \text{ for all } \alpha, -\infty < \alpha < \infty.$ $F_{\mathcal{Y}}(v) = 2F_{\mathcal{X}}(v) - 1$ for $v \ge 0$, and 0 for v < 0. $F_{\mathcal{Z}}(w) = F_{\mathcal{X}}(-w)$ for all $w, -\infty < w < \infty$. $f_{\mathcal{Z}}(w) = f_{\mathcal{X}}(-w)$ for all $w, -\infty < w < \infty$. $\mathsf{E}[\mathcal{Y}^2] = 9.$ $\mathsf{E}[\mathcal{Y}] = 3.$ $\operatorname{var}(\mathcal{Y}) < 9.$ $\operatorname{var}(\mathcal{Y}) < 8.$ $\mathsf{E}[\mathcal{X}\mathcal{Y}] = 0.$ \mathcal{X} and \mathcal{Y} are uncorrelated random variables. \mathcal{X} and \mathcal{Y} are independent random variables. $F_{\mathcal{X}}(6) \ge \frac{7}{8} = 0.8750.$ $F_{\mathcal{X}}(6) \ge 0.9772.$

4. A radio-frequency signal is either a radar echo (hypothesis H_1) or ambient noise (hypothesis H_0). The *phase* of the signal is modeled as a continuous random variable \mathcal{X} whose pdf is as follows:

• When
$$\mathsf{H}_0$$
 is true, \mathcal{X} has pdf $f_0(u) = \begin{cases} \frac{1}{2\pi}, & -\pi < u < \pi, \\ 0, & \text{elsewhere.} \end{cases}$
• When H_1 is true, \mathcal{X} has pdf $f_1(u) = \begin{cases} \frac{1}{2\pi} (1 + \cos u), & -\pi < u < \pi, \\ 0, & \text{elsewhere.} \end{cases}$

The radar receiver measures \mathcal{X} and decides which hypothesis is true.

- (a) Suppose that the maximum-likelihood decision rule is being used. What value(s) of \mathcal{X} result in a decision in favor of H_1 ?
- (b) Find the *false alarm* probability P_{FA} and the *missed detection* or *false dismissal* probability P_{MD} of the maximum-likelihood decision rule.
- (c) Now suppose that $P(\mathsf{H}_0) = \pi_0 = \frac{1}{3}$, $P(\mathsf{H}_1) = \pi_1 = \frac{2}{3}$. What is the *average* error probability \bar{P}_e of the maximum *a posteriori* probability (MAP) (that is, minimum-error-probability or Bayesian) decision rule?
- (d) For what values, if any, of π_0 , $0 < \pi_0 < 1$ does the MAP rule *always* decide in favor of H₀ regardless of the value of \mathcal{X} ?
- 5. A professor breaks the chalk piece with which he is writing on the blackboard at random times that can be modeled as arrivals in a Poisson process with arrival rate $\lambda = 0.1$ per minute.
 - (a) What is the expected length of time between two successive chalk breaks?
 - (b) What is the average number of times that the professor breaks the chalk during a 50 minute lecture?
 - (c) Given that the professor broke 6 chalk pieces in 50 minutes, what is the average number of pieces he broke in the first 25 minutes?

6. The random point $(\mathcal{X}, \mathcal{Y})$ is uniformly distributed on the interior of a square of side 2 centered at the origin. Consider a circle of radius r < 1 centered at $(\mathcal{X}, \mathcal{Y})$, and let $\mathcal{Z} \in \{0, 1, 2\}$ denote the number of sides of the square that are crossed by the circle, as illustrated in the figure below.

If $\mathsf{E}[\mathcal{Z}] = \frac{3}{2}$, what is the value of r?

7. The joint pdf of \mathcal{X} and \mathcal{Y} is given by

$$f_{\mathcal{X},\mathcal{Y}}(u,v) = \begin{cases} 2u, & 0 < u < 1, \ 0 < v < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Are \mathcal{X} and \mathcal{Y} independent random variables? SHOW YOUR WORK.
- (b) Find the pdf of $\mathcal{Z} = \mathcal{XY}$. Be sure to specify the value of $f_{\mathcal{Z}}(\alpha)$ for all $\alpha, -\infty < \alpha < \infty$.
- 8. The jointly Gaussian random variables \mathcal{X} and \mathcal{Y} have means 0 and 14 respectively, variances 4 and 16 respectively, and correlation coefficient $\frac{1}{16}$.
 - (a) Find the pdf of the random variable $\mathcal{Z} = 5\mathcal{X} + \mathcal{Y}$. Be sure to specify the value of $f_{\mathcal{Z}}(\alpha)$ for all $\alpha, -\infty < \alpha < \infty$.
 - (b) Find the numerical value of $P\{\mathcal{Y} > 3\mathcal{X}\}$.