ECE 313: Probability with Engineering Applications

Fall 2002
Final Exam Solutions

Problem 1 T,T,F,T,F,T
Problem 2 T,F,T,T,F
Problem 3 F,T,F,F

Problem 4 (a) area=base \times height $=1$, so density inside region is 1
(b)

$$
f_{X}(x)=\left\{\begin{aligned}
\frac{x}{2} & : 0 \leq x \leq 1 \\
\frac{1}{2} & : 1 \leq x \leq 2 \\
\frac{3-x}{2} & : 2 \leq x \leq 3 \\
0 & :
\end{aligned}\right.
$$

(c) $E[X]=\frac{3}{2}, \operatorname{Var}(X)=\frac{5}{12}$
(d) For $0 \leq a \leq 1$:

$$
f_{Y \mid X}(y \mid a)=\left\{\begin{array}{ccc}
\frac{2}{a} & : & 0 \leq y \leq \frac{a}{2} \\
0 & : & \text { else }
\end{array}\right.
$$

(e) For $1 \leq a \leq 2$:

$$
f_{Y \mid X}(y \mid a)=\left\{\begin{array}{llc}
2 & : & \frac{a-1}{2} \leq y \leq \frac{a}{2} \\
0 & : & \text { else }
\end{array}\right.
$$

(f)

$$
E\left[Y_{X}=x\right]=\left\{\begin{array}{clc}
\frac{x}{4} & : 0 \leq x \leq 1 \\
\frac{2 x-1}{4} & : & 1 \leq x \leq 2 \\
\frac{x+1}{4} & : & 2 \leq x \leq 3 \\
0 & : & \text { else }
\end{array}\right.
$$

(So slope is $1 / 4$ over the intevals $[0,1]$ and $[2,3]$, and the slope is $1 / 2$ over the interval $[1,2]$.)

Problem 5 (a)

$$
p_{L}(u)=\left\{\begin{array}{clc}
\frac{4}{7} & : & u=1 \\
\frac{3}{7} & : & u=0 \\
0 & : & \text { else }
\end{array}\right.
$$

(b) The nonzero values of the $\operatorname{pmf} p_{L R}(l, r)$ are shown in the table:

$$
\begin{array}{c|cc}
& r=0 & r=1 \\
\hline l=0 & \frac{6}{42} & \frac{12}{42} \\
l=1 & \frac{12}{42} & \frac{12}{42}
\end{array}
$$

(c) $\operatorname{Cov}(L, R)=\frac{-2}{49}$
(d) No. One justification is that $\operatorname{Cov}(L, R) \neq 0$. Another justification is that $P[L=1, R=1] \neq P[L=$ 1] $P[R=1]$.
(e)

$$
p_{Z}(u)=\left\{\begin{array}{clc}
\frac{1}{7} & : & u=0 \\
\frac{4}{7} & : & u=1 \\
\frac{2}{7} & : & u=2 \\
0 & : & \text { else }
\end{array}\right.
$$

Problem 6 (Note that T has the exponential density with parameter 1/10.)
(a)

$$
F_{T}(t)=\left\{\begin{array}{cc}
1-e^{-t / 10} & : \quad t \geq 0 \\
0 & : \quad t<0
\end{array}\right.
$$

(b) $E[T]=10$
(c) $1-e^{-1}$
(d) $\frac{1}{6 e}$
(e) $\mathrm{E}[\mathrm{N}]=10$

Problem 7 (a) The ML rule can be expressed as a likelihood ratio test with threshold one. This leads to decide that H_{1} is true if

$$
\frac{\mu_{1} e^{-\mu_{1} X}}{\mu_{0} e^{-\mu_{0} X}} \geq 1
$$

and decide H_{0} is true otherwise. This simplifies to decide H_{1} is true if

$$
X \geq \frac{\ln \left(\mu_{0} / \mu_{1}\right)}{\mu_{0}-\mu_{1}}
$$

and decide H_{0} is true otherwise.
(b)

$$
\begin{gathered}
p_{\text {false_alarm }}=\left(\frac{\mu_{1}}{\mu_{0}}\right)^{\frac{\mu_{0}}{\mu_{0}-\mu_{1}}} \\
p_{\text {miss }}=1-\left(\frac{\mu_{1}}{\mu_{0}}\right)^{\frac{\mu_{1}}{\mu_{0}-\mu_{1}}}
\end{gathered}
$$

(c) The MAP rule always decides that H_{1} is true if and only if $\pi_{0} \leq \frac{\mu_{1}}{\mu_{0}+\mu_{1}}$.
(c) The MAP rule always decides that H_{0} is true if and only if $\pi_{0}=1$.

Problem 8 (a) The best estimator of the form $a X+b$ is $E[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-E[X])=4+\frac{25}{35}(X-4)$. Equivalently, $a=\frac{8}{7}$ and $b=\frac{5}{7}$.
(b) The best estimator of the form $c X$ is $\frac{E[X Y]}{E\left[X^{2}\right]} X=\frac{41}{51} X$.
(c) The best estimator of the form $c X$ is also the best estimator of the form $a X+b$ under the constraint that $b=0$. Allowing $b \neq 0$ can only help. Thus, whenever the optimal b is not zero, the best estimator of the form $a X+b$ is better than the best estimator of the form $c X$.

