Assigned: Wednesday, October 31, 2001 Wednesday, November 7, 2001 Reading: Ross, Chapter 5 and Chapter 6

Noncredit Exercises: Ross, Chapter 5: Problems 15-38; Chapter 6: Problems 1, 8-15, 20-23 **Problems:**

- 1. [Read Example 3d on pp. 198-199 first.] Let the (straight) line segment ACB be a diameter of a circle of unit radius and center C. Consider an arc AD of the circle where the length **X** of the *arc* (measured clockwise around the circle) is a random variable uniformly distributed on [0,2]. Now consider the "random chord" AD.
- (a) Find the probability that the length L of the random chord is greater than the side of the equilateral triangle inscribed in the circle.
- (b) Express **L** as a function of the random variable **X**, and find the probability density function for **L**.
- 2. The random variable **X** has probability density function $f_{\mathbf{X}}(u) = \begin{cases} 2(1-u), & 0 & u = 1, \\ 0, & \text{elsewhere.} \end{cases}$ Let $\mathbf{Y} = (1-\mathbf{X})^2$.
- (a) What is the CDF $F_{\mathbf{Y}}(v)$ of the random variable \mathbf{Y} ? Be sure to specify the value of $F_{\mathbf{Y}}(v)$ for all v, -< v <.
- (b) Show that the $F_{\mathbf{Y}}(v)$ that you found in part (b) is a nondecreasing continuous function.
- 3. The radius of a sphere is a random variable **R** with pdf $f_{\mathbf{R}}(\) = \frac{3}{0}^{2}, \qquad 0 < < 1,$ elsewhere.
- (a) Use LOTUS to find the average radius, average volume and average surface area of the sphere. Does a sphere of average radius have average volume? Does a sphere of average radius have average surface area?
- (b) Find the CDF $F_V(\)$ and pdf $f_V(\)$ of V, the volume of the sphere.
- (c) Find E[V] directly from this pdf. Do you get the same answer as in part (a)? Why not?
- (d) If the sphere is made of metal and carries an electrical charge of Q coulombs, what is the CDF $F_S(x)$ and the pdf $f_S(x)$ of the surface charge density S on the sphere?
- 4. ["Give me an A! Give me a D! Give me a converter! What have you got? An A/D converter! Go Team!"] A signal \mathbf{X} is modeled as a unit Gaussian random variable. For some applications, however, only the quantized value \mathbf{Y} (where $\mathbf{Y} = \text{if } \mathbf{X} > 0$ and $\mathbf{Y} = -\text{if } \mathbf{X} = 0$) is used. Note that \mathbf{Y} is a *discrete* random variable.
- (a) What is the pmf of \mathbf{Y} ?
- (b) Suppose that = 1. If the signal **X** happens to have value 1.29, what is the error made in representing **X** by **Y**? What is the squared-error? Repeat for the case when **X** happens to have value /4 and when **X** happens to have value /4.
- (c) We wish to design the quantizer so as to minimize the squared-error. However, since \mathbf{X} (and \mathbf{Y}) are random, we can only minimize the squared-error in the probabilistic (that is, average) sense. Now, part (b) shows that the squared-error depends on the value of \mathbf{X} ,

and can be expressed as
$$\mathbf{Z} = (\mathbf{X} - \mathbf{Y})^2 = g(\mathbf{X}) = \frac{(\mathbf{X} - \mathbf{Y})^2}{(\mathbf{X} + \mathbf{Y})^2}$$
 if $\mathbf{X} > 0$ if $\mathbf{X} > 0$.

- So we want to choose so that $E[\mathbf{Z}]$ is as small as possible. Use LOTUS to e-zily find $E[\mathbf{Z}]$ as a function of , and then find the value of that minimizes $E[\mathbf{Z}]$.
- (d) We now get more ambitious and use a 3-bit A/D converter which first quantizes \mathbf{X} to the nearest integer \mathbf{W} in the range -3 to +3. Thus, $\mathbf{W}=3$ if $\mathbf{X}=2.5$, $\mathbf{W}=2$ if 1.5 $\mathbf{X}<2.5$, etc. Note that \mathbf{W} is a discrete random variable. Find the pmf of \mathbf{W} .

- (e) The output of the A/D converter is a 3-bit 2's complement representation of W. Suppose that the output is $(\mathbf{Z}_2, \mathbf{Z}_1, \mathbf{Z}_0)$. What is the pmf of \mathbf{Z}_2 ? of \mathbf{Z}_1 ? of \mathbf{Z}_0 ?
- (f) Noncredit exercise (but a real-life engineering problem!): Suppose that W takes on values -3, -2, -, 0, +, +2, +3 and quantization is as before: X is mapped to the nearest W value. What value of minimizes $E[(X W)^2]$?
- The lifetime of a system with hazard rate (t) = bt is a Rayleigh random variable \mathbf{X} with pdf $f(u) = (bu) \cdot \exp(-bu^2/2)$ for u > 0 (Ross, p. 216). The system fails at time t, i.e. $\mathbf{X} = t$ is observed to have occurred on this trial. What is the maximum-likelihood estimate of the parameter b that occurs in the pdf and hazard rate? Remember that the maximum-likelihood estimate b of the parameter b maximizes the pdf at the observed value b. Thus, for given b, what value of b maximizes b0?
- **6.** If hypothesis H_0 is true, the pdf of \mathbf{X} is $f_0(u) = (1/2) \exp(-|u+1|), < u <$, while if hypothesis H_1 is true, the pdf of \mathbf{X} is $f_1(u) = (1/2) \exp(-|u-1|), < u <$. Such pdfs are called LaPlacian or double exponential pdfs.
- (a) Sketch the two pdfs.

Be careful: those absolute-value signs are trickier than they look!

- (b) State the maximum-likelihood decision rule in terms of a threshold test on the observed value u of the random variable \mathbf{X} instead of a test that involves comparing the likelihood ratio $(\mathbf{u}) = f_1(\mathbf{u})/f_0(\mathbf{u})$ with 1.
- (c) What are the probabilities of false-alarm and missed detection for the maximum-likelihood decision rule of part (b)?
- (d) Compute the values of the likelihood ratio for $u = -1.2, -1, -0.8, \dots, 0.8, 1, 1.2$.
- (e) The Bayesian (minimum probability of error) decision rule compares (u) to (0/1). Show that this decision rule also can be stated in terms of a threshold test on the observed value u of the random variable \mathbf{X} .
- (f) If $_0 = 2_1$, what is the average probability of error of the Bayesian decision rule?
- What is the average error probability of a decision rule that always decides H_0 is the true hypothesis, regardless of the value taken on by \mathbf{X} ?
- (h) Show that if $_0 > e^2/(e^2+1)$, the Bayesian decision rule always decides that H_0 is the true hypothesis regardless of the value taken on by \mathbf{X} .
- 7. The random variable \mathbf{X} models a physical parameter. If hypothesis H_0 is true, then, $f_0(u)$, the pdf of \mathbf{X} , is Gaussian with mean 0 and variance a^2 . On the other hand, if hypothesis H_1 is true, then $f_1(u)$, the pdf of \mathbf{X} , is Gaussian with mean 0 and variance $b^2 > a^2$.
- Suppose that H_0 and H_1 have equal probability. Thus, for i = 0, 1, the pdf of \mathbf{X} when hypothesis H_i is true can be thought of as the *conditional* pdf of \mathbf{X} given that H_i occurred, i.e. $f_{\mathbf{X}|H_i}(\mathbf{u}|H_i)$. Write an expression for the *unconditional* pdf of \mathbf{X} . Is the unconditional pdf of \mathbf{X} a Gaussian pdf?
- **(b)** What is the likelihood ratio? Simplify your answer.
- (c) What is the maximum-likelihood decision rule, and what are the false alarm probability and the missed detection probability of this rule?