University	
of Illinois	

Problem Set #1 Page 1 of 2

Assigned:	Wednesday, August 22
Due:	Wednesday, August 29
Reading:	The ECE 313 FAQ at http://courses.ece.uiuc.edu/ece313/faq.html
C	Ross, Chapter 1.1–1.5, Chapter 2.1–2.5 and 2.7
Noncredit E	xercises: (Do not turn these in)

	Problems	Theoretical Exercises	Self-Test Problems
Chapter 1	1–5, 7, 9	4, 8, 13	1-15
Chapter 2	3, 4, 9, 10, 11-14	1-3, 6, 7, 10, 11, 12, 16, 19, 20	1-8

Problems: These problems are based entirely on material covered in the *prerequisites* to this course. You should have mastered this stuff already, but may need to review the material one more time before starting the course. Think of this problem set as a diagnostic aid: if you cannot solve *all* these problems correctly, you will have difficulty in comprehending the material in the latter half of this course. It is not in your best interest to discover *after* the drop date that you really don't understand calculus as well as you thought you did, and that consequently you are in some danger of failing this course.

Do not use Mathematica or Matlab or a calculator etc. to do these problems except when you are specifically asked to do so.

1.(a) Does the commutative law of addition: a + b = b + a imply that -4 + 1 equals 1 - 4?

- (b) Determine whether -2^2+1 equals $1-2^2$ and -2^3+2 equals $2-2^3$ using
 - (i) ordinary grade–school arithmetic.
 - (ii) your calculator. On an algebraic-entry calculator (e.g. TI, Casio, Sharp, most "desk accessory" calculators on PCs and Macintoshes etc), what happens when you press the keys marked -2 2 x^2 +1 1 =?
 - (iii) the Microsoft spreadsheet program Excel. (Enter the four formulas $=-2^{2}+1$, $=1-2^{2}$, $=-2^{3}+2$, and $=2-2^{3}$ into different cells in the spreadsheet)
- (c) If you agree with Excel that $-2^2+1=5$ $1-2^2=-3$, while $-2^3+2=2-2^3$ has value -6, what happens when you divide both sides of the latter equation by 2?
- (d) True or False? The solutions to the quadratic equation $ax^2 + bx + c = 0$ are given by $\frac{2c}{\sqrt{2c}}$

$$-b \pm \sqrt{b^2 - 4ac}$$

- 2. The angles in part (a) are expressed in **degrees** and **not in** the **radians** more commonly used in mathematical circles.
- (a) Use your calculator to evaluate $\cot(10^\circ)\cot(30^\circ)\cot(50^\circ)\cot(70^\circ)$ without writing down intermediate results such as the values of $\cot(10^\circ)$, $\cot(30^\circ)$, etc and re-entering the numbers into your calculator. If your calculator cannot be used in this fashion, you are urged to replace it with a more sophisticated machine.
- (b) Find the value of $\frac{1}{\sqrt{2} + \sqrt{1}} + \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{4} + \sqrt{3}} + \dots + \frac{1}{\sqrt{100} + \sqrt{99}}$. You can use your programmable calculator if you wish.
- 3. In this problem, all angles are expressed in radians.
- (a) Use your calculator to evaluate $\sqrt{52} \cos(3^{-1}\arctan(18\sqrt{3}/35))$.
- (**b**) Find the limit of $\frac{1}{[\sin x]^2} \frac{1}{x^2}$ as x approaches 0. (Hint: the answer is not 0, or 1, or)
- (c) Find the maxima of $f(x) = x^{25}(1.00001)^{-x}$ for x > 0. (If you have a graphing calculator, try it on this problem; otherwise just use standard calculus methods)

University of Illinois

- **5.(a)** What is the derivative of $\arctan(x)$? (You can look up the answer if you like!)
- (b) I denotes the value of the integral $\frac{2}{1+x^2}$ dx. Use the result of part (a) to show that I = .
- (c) J denotes the value of the integral $\int_{-1}^{1} \frac{2}{1+y^2} dy$. State True or False: I equals J.
- (d) Make the substitution y = 1/x in the integral of part (b) and simplify the integrand to show that $I = \frac{2}{1+x^2} dx = \frac{-2}{1+y^2} dy = -J$? Does this contradict your answer to part (c)?
- (e) I can equal **both** J **and** -J if and only if I = J = 0. Since you showed in part (b) that I = -, does this mean = 0? (Such a result would greatly simplify a **lot** of engineering math!)
- 6.(a) Integrate $f(x, y) = \begin{cases} 1, & 0 < y < x, \\ 0, & \text{elsewhere,} \end{cases}$ over the region $\{(x, y) : y > x^2\}$.
- (b) Compute the integral of $(x^2 + y^2)^{-2}$ over the region $\{(x,y) : x^2 + y^2 > 3\}$.