Discrete Random Variables

- Suppose that the discrete random variable \(X \) takes on values \(u_1, u_2, \ldots, u_m, \ldots \) and the discrete random variable \(Y \) takes on values \(v_1, v_2, \ldots, v_m, \ldots \).
- \((X, Y)\), the random point in the plane, takes on values \((u_i, v_j)\).
- The joint CDF \(F_{X,Y}(u,v) \) is a staircase function that has a step at each of the values \((u_i, v_j)\) that \((X, Y)\) takes on.

An example of the CDF of \((X, Y)\):

- Example: \(X \) and \(Y \) are Bernoulli random variables. However, \(P((X, Y) = (0,0)) = 0 \) and the other three possible values \((1,0), (0,1), (1,1)\) for \((X, Y)\) have probability \(1/3\) each.

The joint probability mass function:

- The joint probability mass function (joint pmf) for discrete random variables \(X \) and \(Y \) taking on values \(u_1, u_2, \ldots, u_m, \ldots \) and \(v_1, v_2, \ldots, v_m, \ldots \), respectively, is defined as:

\[
p_{X,Y}(u,v) = P\{X = u_i, Y = v_j\} \text{ if } u = u_i, v = v_j,
\]

and

\[
p_{X,Y}(u,v) = 0 \text{ otherwise.}
\]
- The joint pmf describes a collection of point masses in the plane.

Some thoughts about the joint pmf:

- The joint pmf defines a collection of point masses in the plane.
- The point masses are at the intersections of the lines in the plane whose equations are \(u = u_i \) and \(v = v_j \).
- The point masses lie on a grid.

More thoughts about the joint pmf:

- The point masses lie on a grid.
- Not every grid point need have a mass.
- Total probability mass is 1.
- Hence, \(\sum \sum p_{X,Y}(u_i, v_j) = 1 \).
- \(p_{X,Y}(u,v) \geq 0 \) for all \(u \) and \(v \), \(-\infty < u, v < \infty \).

Probabilities from the joint pmf:

- Let \(A \) denote a region of the plane.
- Then, \(P((X,Y) \in A) \) is the sum of all the probability masses in the region \(A \).
- This also holds if \(A \) is a curve (including a straight line as a special case) — just sum up all the probability masses on the curve.
The marginal pmfs of X and Y

- \(p_X(u) \) and \(p_Y(v) \), the marginal pmfs of X and Y, are easily obtained from the joint pmf \(p_{X,Y}(u,v) \).
- \(p_X(u) = \sum_j p_{X,Y}(u,v_j) \); \(p_Y(v) = \sum_i p_{X,Y}(u_i,v) \).
- As with CDFs, the word marginal is not pejorative.
- One possible reason for this unusual nomenclature will be presented real soon now (RSN).

A picture is worth a thousand words

- \(p_{X,Y}(u_i, v_j) \) is written as \(p(u_i, v_j) \) for brevity.
- The row and columns sum appear in the margins.
- Note the ordering of the \(v_j \)'s.

Marginal pmfs from the joint pmf

- \(p_X(u_i) = \sum_j p_{X,Y}(u_i,v_j) \); \(p_Y(v_j) = \sum_i p_{X,Y}(u_i,v_j) \).
- \(p_X(u_i) \) is the sum of all probability masses lying on the vertical line with equation \(u = u_i \).
- \(p_Y(v_j) \) is the sum of all probability masses lying on the horizontal line with equation \(v = v_j \).

Why marginal, for crying out loud?

- The joint probability matrix
 - Because of the grid structure of the joint pmf, it is convenient to think of the masses as entries in a matrix or array.
 - Rows are labeled with the \(v_j \)'s and columns are labeled with the \(u_i \)'s.
 - The matrix entry in the \(v_j \)-th row and \(u_i \)-th column is the probability of the event \(P(X = u_i, Y = v_j) \), i.e., the value of \(p_{X,Y}(u_i,v_j) \).

An example

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0.17</td>
<td>0.35</td>
</tr>
<tr>
<td>(v_2)</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>(v_3)</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>(v_4)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- The marginal pmfs are as shown.
- \(P(X = Y) = 0.02 + 0.14 + 0.12 = 0.28 \).
- \(P(X + Y = 3) = 0.02 + 0.16 + 0 = 0.18 \).
Generalization: many discrete RVs

- Let X_1, X_2, \ldots, X_n be n discrete random variables defined on a sample space
- $\mathbf{X} = (X_1, X_2, \ldots, X_n)$ is a random vector
- $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ is a real vector
- The notation $\{ \mathbf{X} = \mathbf{u} \}$ denotes the event $\{ X_1 = u_1, X_2 = u_2, \ldots, X_n = u_n \}$, where, as before, the commas denote intersections, that is, $\{ \mathbf{X} = \mathbf{u} \} = \{ X_1 = u_1 \} \cap \{ X_2 = u_2 \} \cap \ldots \cap \{ X_n = u_n \}$.

The joint pmf of many discrete RVs

- The joint pmf $p_{\mathbf{X}}(\mathbf{u}) = p(\mathbf{X} = \mathbf{u})$ of the random vector \mathbf{X} is defined as $p_{\mathbf{X}}(\mathbf{u}) = p(X_1 = u_1, X_2 = u_2, \ldots, X_n = u_n)$.
- $p_{\mathbf{X}}(\mathbf{u}) \geq 0$
- $\sum_{u_1} \sum_{u_2} \ldots \sum_{u_n} p_{\mathbf{X}}(\mathbf{u}) = 1$
- The marginal pmf of any subset of $\{X_1, X_2, \ldots, X_n\}$ is obtained by summing over the unwanted variables.

What to do for the rest of this class?

- Let \mathbf{X} and \mathbf{Y} be discrete random variables with joint pmf $p_{\mathbf{X}, \mathbf{Y}}(u_i, v_j)$
- Suppose that on a trial of the experiment, it was observed that \mathbf{Y} had value v_3
- What can we say about the probability of the event $\{ \mathbf{X} = u_i \}$ on this trial?
- Given the event $\{ \mathbf{Y} = v_3 \} = A$ has occurred, we should update the probability of event $\{ \mathbf{X} = u_i \}$ from $P(\mathbf{B})$ to $P(\mathbf{B} | A)$.

Conditional pmfs, again?

- Given the event $\{ \mathbf{Y} = v_3 \} = A$ has occurred, we should update the probability of event $\mathbf{B} = (X = u_i)$ from $P(\mathbf{B})$ to $P(\mathbf{B} | A)$
- $P(\mathbf{B} | A) = P(\mathbf{X} = u_i, \mathbf{Y} = v_3) / P(\mathbf{Y} = v_3)$
- Remember, commas mean intersections
- $P(\mathbf{X} = u_i | \mathbf{Y} = v_3) = p_{X,Y}(u_i, v_3) / p_Y(v_3)$
- = ratio of joint pmf to marginal pmf = conditional pmf of \mathbf{X} given $\mathbf{Y} = v_3$

Definition of conditional pmf

- The conditional pmf of \mathbf{X} given the event $\{ \mathbf{Y} = v_j \}$ has occurred is $p_{X,Y}(u_i | v_j) = p_{X,Y}(u_i, v_j) / p_Y(v_j)$
- Note that we are assuming that $p_Y(v_j) > 0$
- $p_{X,Y}(u_i | v_j) = p_{X,Y}(u_i | v_j)$ if u_i is one of the values that \mathbf{X} can take on
- $p_{X,Y}(u_i | v_j) = 0$ if u_i is not any of the u_i

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

31.3
Conditional pmf is a function of u !!

- The conditional pmf of X given the event \(\{Y = v_j\} \) has occurred is
 \[p_{X|Y}(u|v_j) = p_{X,Y}(u, v_j)/p_Y(v_j) \]
- The argument of the conditional pmf is u
- \(v_j \) is just the value of Y that was observed on this trial
- \(p_Y(v_j) \) is the value of the pmf of Y at \(v_j \)
- \(p_Y(v_j) \) is a number, not a function

Conditional pmf from the joint pmf

\[p_{X|Y}(u|v_j) = \frac{p_{X,Y}(u, v_j)}{p_Y(v_j)} \]

- \(p_{X|Y}(u|v_j) \) has values 1/6, 1/3, 1/3 and 1/6 at u = –1, 0, 1, and 2
- \(p_{X|Y}(u|2) \) has values 0.01, 0.02, 0.02 and 0.01
- \(p_{X|Y}(u|3) \) has values 0.06, 0.44, 0.44 and 0.06

A numerical example

<table>
<thead>
<tr>
<th>u</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.35</td>
<td>0.34</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>1</td>
<td>0.15</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

A sense of déjà vu all over again...

- We have already studied the notion of conditional pmf of X given an event A in Lecture 14
- Here, we are giving the conditioning event in terms of another random variable Y
- All the results from Lecture 14 hold — just write them in terms of Y
- Events \(\{Y = v_1\}, \{Y = v_2\}, \ldots, \{Y = v_m\}, \ldots \) are a partition of the sample space \(\Omega \)
- \(p_{X|Y}(u) = \sum_{j=1}^{m} p_{X,Y}(u, v_j) \)
- \(= \sum_{j=1}^{m} p_{X,Y}(u|v_j)p_Y(v_j) \)

Unconditional pmf from conditional

- Events \(\{Y = v_1\}, \{Y = v_2\}, \ldots, \{Y = v_m\}, \ldots \) are a partition of the sample space \(\Omega \)
- \(p_X(u) = \sum_{j=1}^{m} p_{X,Y}(u|v_j)p_Y(v_j) \)
- This is just the theorem of total probability
- \(P(B) = \sum P(B|A_i)P(A_i) \)
- expressed in terms of pmfs
Reversing the conditioning…

- \(p_X(u) = \sum p_{X,Y}(u,v) \)
- \(p_{Y|X}(v|u) = \frac{p_{X,Y}(u,v)}{p_X(u)} \)
- This is just Bayes’ formula

Example

- \(Y \) takes on integer values 0, 1, 2, …
- The conditional pmf of \(X \) given that \(Y = n \) is a binomial pmf with parameters \((n, p)\) where \(0 < p < 1 \)
- Thus, conditioned on the event \(\{ Y = n \} \), the random variable \(X \) takes on the \(n+1 \) values 0, 1, 2, … \(n \)
- \(p_{X|Y}(k|n) = \binom{n}{k} p^k (1-p)^{n-k}, 0 \leq k \leq n \)

Example (continued)

- \(p_{X,Y}(k,n) = \binom{n}{k} p^k (1-p)^{n-k} \cdot \exp(-\lambda) \cdot \frac{\lambda^n}{n!} \)

The joint pmf of \(X \) and \(Y \)

- For \(0 \leq k \leq n \), \(p_{X,Y}(k,n) = p_{X|Y}(k|n) \cdot p_Y(n) \)
- \(= \frac{n!}{k!} p^k (1-p)^{n-k} \cdot \exp(-\lambda) \cdot \frac{\lambda^n}{n!} \)
- The point masses lie in the triangular region shown

Some thoughts on the joint pmf

- \(p_{X,Y}(k,n) = \binom{n}{k} p^k (1-p)^{n-k} \cdot \exp(-\lambda) \cdot \frac{\lambda^n}{n!} \)
- Conditioned on \(Y = n \), \(X \) has values from 0 to \(n \). However, unconditionally, \(X \) takes on values 0, 1, 2, … the same as \(Y \) !!
- \(Y \geq X \) always

Unconditional (marginal) pmf of \(X \)

- \(p_X(k) = \sum_{n=k}^{\infty} p_{X,Y}(k,n) \)
- Where sum is over \(n \) from \(n = k \) to \(\infty \)
- \(p_X(k) = \exp(-\lambda p) \cdot (\lambda p)^k / k! \) for \(k = 0, 1, 2, \ldots \)
- \(X \) is a Poisson RV with parameter \(\lambda p \) !!
Some details of the calculations

- $p_X(k) = \sum p_{X|Y}(k,n)$
- $= \sum [p(k(n-k)!p^n(1-p)^{n-k}\exp(-\lambda)\lambda^n/n!]$
- Remember that the sum is over n from $n = k$ to ∞
- $p_T(k) = \exp(-\lambda)\lambda^k/k!$
- The unconditional pmf of X is Poisson with parameter λp

What have we learned so far?

- Y is a Poisson random variable with parameter λ
- Conditioned on $Y = n$, X is a binomial random variable with parameters (n,p)
- The joint pmf of X and Y is nonzero on a triangular region
- $Y \geq X$ always
- The unconditional pmf of X is Poisson with parameter λp

Conditional pmf of Y given X

- $p_{Y|X}(n|k) = p_{X|Y}(k,n)/p_X(k)$
- $= \exp(-\lambda(1-p))\lambda^{n-k}/(n-k)!$ for $n \geq k$
- $= \exp(-\lambda(1-p))\lambda^{n-k}/(n-k)!$ for $n \geq k$
- This is called a displaced Poisson pmf

Move to the right by k places...

- For $n \geq k$, $p_{Y|X}(n|k) = p_{X|Y}(k,n)/p_X(k)$
- $= \exp(-\lambda(1-p))\lambda^{n-k}/(n-k)!$
- This is a displaced Poisson pmf with parameter $\lambda(1-p)$
- Displaced in the sense that the probability masses have moved k units to the right
- Conditioned on $X = k$, $Y = k + Z = X + Z$ where Z is a Poisson random variable with parameter $\lambda(1-p)$

What’s so important about all this?

- The example that we have studied arises in several different applications
- α-particles counted in a Geiger counter
- Each particle is detected with probability p and not detected with probability $1-p$
- Detections are independent of each other
- If $n \alpha$-particles are emitted, the number detected (the count in the Geiger counter) is a binomial RV with parameters (n,p)

Demand better Geiger counters...

- α-particle emission is a Poisson process
- The number of α-particles emitted in unit time is a Poisson RV with parameter λ
- The number of α-particles detected in unit time is a Poisson RV with parameter λp
- If the Geiger counter counted k particles, what is the best estimate of how many particles were emitted?
- What is $P(\text{emissions} = n \mid \text{count} = k)$?
Another application

- Consider a Poisson process with arrival rate μ.
- Number of arrivals in interval of length T is a Poisson RV Y with parameter $\mu T = \lambda$.
- The number of arrivals in a subinterval of length pT, $0 < p < 1$, is a Poisson RV X with parameter $\mu pT = \lambda p$.
- Note that $Y \geq X$ always.
- What is the joint pmf of X and Y?

Another application (continued)

For $n \geq k$, $p_{X,Y}(k,n) = P(X = k, Y = n) = P(k$ arrivals in subinterval, n arrivals total) = $P(k$ in subinterval, $n-k$ in complement) = $P(k$ in subinterval)•$P(n-k$ in complement) since disjoint intervals are independent = $\exp(-\lambda p)(\lambda p)^k/k!$ = $\exp(-\lambda(1-p))(\lambda(1-p))^{n-k}/(n-k)!$

Example applies to Poisson process

- $X = \#$ arrivals in interval of length pT.
- $Y = \#$ arrivals in longer interval of length T.
- Joint pmf of X and Y is as in our example.
- Conditional pmf of X given Y is binomial.
- Conditional pmf of Y given X is displaced Poisson.
- Given $X = k$, $Y-k = Z = \#$ arrivals in complementary interval is Poisson with parameter $\mu(1-p)T = \lambda(1-p)$.

Summary

- We have studied joint pmfs of discrete random variables.
- We have learned about the joint probability matrix and how to use it.
- We have learned how to find marginal pmfs from joint pmfs.
- We have learned about conditional pmfs.
- We have learned a little more about Poisson processes.