Functions of random variables

- **X** is a random variable
- Let **Y** = g(\(X\)) where g(\(\cdot\)) is some specified function
- What is the probabilistic behavior of **Y**?
- Some answers are readily obtained
- LOTUS tells us how to find E[\(Y\)] = E[g(\(X\))]
- LOTUS also gives E[\(Y^2\)] = E[g^2(\(X\))]
- From which we get \(\text{var}(Y) = E[g^2(\(X\)) - E^2[g(\(X\))].

What kind of random variable is **Y**?

- If **X** is a discrete random variable taking on values \(u_1, u_2, \ldots, u_n, \ldots\), then **Y** must also be a discrete random variable
- **Y** takes on values g(\(u_1\)), g(\(u_2\)), …, g(\(u_n\)), …
- Note that some values may be the same, i.e., g(\(u_i\)) = g(\(u_j\)) for some choices of \(i\) and \(j\)
- The pmf of **Y** is readily obtained from this
- \(p_Y(v_j) = P\{Y = v_j\} = \sum p_X(u_i)\)
 where the sum is over all \(i\) such that g(\(u_i\)) = v_j

But what if **X** is a continuous RV?

- If **X** is a continuous random variable, then depending on the function g(\(\cdot\)), **Y** may be a
 - discrete random variable
 - continuous random variable
 - mixed random variable
 - singular random variable
- Technicality: g(\(\cdot\)) must be measurable, but we only deal with measurable functions

When will **Y** be a discrete RV?

- Let **X** be a continuous random variable
- Suppose that the real numbers can be partitioned into a (countable) set of intervals \(I_1, I_2, \ldots, I_n, \ldots\)
 such that g(u) has constant value \(v_j\) for all \(u \in I_j\)
- Then, **Y** takes values \(v_1, v_2, \ldots, v_n, \ldots\) with probabilities \(P(X \in I_1), P(X \in I_2), \ldots\)
- \(P(X \in I_1), \ldots\) respectively

An example of such a function

- \(g(u)\)
- \(u\)
- A graph of what the function g(\(\cdot\)) looks like is shown next

A quantizer function

- Example: g(\(\cdot\)) is a staircase function or quantizer specified as follows:
 - For each value of \(u\), let \(n\) be the unique integer such that \(n-0.5 < u \leq n+0.5\). Then, g(\(u\)) = n, that is, g(\(u\)) has constant (integer) value \(n\) for all \(u \in (n-0.5, n+0.5]\)
- A graph of what the function g(\(\cdot\)) looks like is shown next
The quantizer function \(g(u) \)

\[g(u) = \begin{cases}
2 & \text{if } u > 2.5 \\
1 & \text{if } -1.5 < u \leq 1.5 \\
0 & \text{if } -2.5 < u \leq -0.5 \\
-1 & \text{if } -2 < u \leq -1 \\
-2 & \text{if } u < -2.5
\end{cases} \]

Continuous to discrete

- Example: \(g(u) \) has constant (integer) value \(n \) for all \(u \in (n-0.5, n+0.5] \)
- Thus, if the value of \(X \) on any trial of the experiment is in the interval \((n-0.5, n+0.5]\), then the value of \(Y \) on that trial is \(n \)
- \(p_Y(n) = P(Y = n) = P(X \in (n-0.5, n+0.5]) \)
- \(= \text{area under pdf curve } f_X(u) \)
- \(\text{from } u = n-0.5 \text{ to } u = n+0.5 \)
- \(= F_X(n+0.5) - F_X(n-0.5) \)

How to think about it …

Mass is transferred from horizontal (\(X \)) axis to vertical (\(Y \)) axis

What’s the final answer?

- \(g(X) \)
- \(p_Y(2) = p_Y(-2) = 1/32; \ p_Y(1) = p_Y(-1) = 1/4; \ p_Y(0) = 7/16 \)

Continuous to discrete (continued)

- Example: \(g(u) \) has constant (integer) value \(n \) for all \(u \in (n-0.5, n+0.5] \)
- \(p_Y(n) = F_X(n+0.5) - F_X(n-0.5) \)
- Let \(X \) be a \(\mathcal{N}(\mu, \sigma^2) \) RV
- Then, \(p_Y(n) = P(X \in (n-0.5, n+0.5]) \)
- \(= \Phi((n+0.5-\mu)/\sigma) - \Phi((n-0.5-\mu)/\sigma) \)
- which can be found from tables … or by using your calculator

Round up all the usual suspects!

- Example: \(h(\cdot) \) has constant (integer) value \(n \) on the interval \((n-1, n] \). Thus, \(Z = h(X) \)
 \(= \lceil X \rceil \) rounds up the value of \(X \)
- \(p_Z(n) = P(X \in (n-1, n]) \)
- If \(X \) is an exponential RV with parameter \(\lambda \)
 then, for \(n \geq 1, \ p_Z(n) = P(X \in (n-1, n]) \)
 \(= \exp(-\lambda(n-1)) - \exp(-\lambda n) \)
 \(= \exp(-\lambda(n-1))[1 - \exp(-\lambda n)] \)
 \(= \exp(-\lambda)^{n-1}[1 - \exp(-\lambda)] = q^{n-1}p \)
Exponential RV \rightarrow Geometric RV

- If \(X \) is an exponential RV with parameter \(\lambda \),
 \(Z = \lceil X \rceil \) is a geometric random variable
 with parameter \(p = 1 - \exp(-\lambda) \)
- \(p_Z(n) = [1 - \exp(-\lambda)] \cdot [\exp(-\lambda)]^{n-1} \) for \(n \geq 1 \)
- Geometric RVs and exponential RVs are memoryless: \(P\{X > a + b \mid X > a\} = P\{X > b\} \)
- So, here is another analogy between them based on rounding up the value
- What about waiting times?

Rounding up waiting times

- Clock signal at \(t = 0, 1, 2, \ldots \)
- Poisson process with arrival rate \(\lambda/\text{clock} \)
- Arrivals (if any) during the time interval \((n-1, n] \) cannot be noticed till the next clock signal at \(t = n \)
- Waiting time for the next non-empty clock interval is a geometric RV with parameter \(p = 1 - \exp(-\lambda) \)
- Note: \(P\{\text{at least one arrival}\} = 1 - \exp(-\lambda) \)

Alas, the easy stuff is all done …

- discrete \rightarrow discrete transformations and
 continuous \rightarrow discrete transformations of
 random variables are easy to handle
- continuous \rightarrow continuous transformations
 and
 continuous \rightarrow mixed transformations
 of random variables require more careful work, but, as usual, DAD can help a lot

Continuous RV \rightarrow Continuous RV

- Let \(X \) denote a continuous RV and \(g(u) \) a continuous function of \(u \) such that \(g'(u) \) is not zero on any interval
- Note: Having \(g'(u) = 0 \) for some values of \(u \) is acceptable, but \(g'(u) = 0 \) for all \(u \) such that \(s < u < t \) is not allowed
- This restriction avoids “flat spots” in \(g(\cdot) \) that give rise to mixed or discrete RVs
- Then, \(Y = g(X) \) is a continuous RV

\(Y = g(X) \) is a continuous RV

- In order to determine the pdf of \(Y \), it is very useful to first draw a sketch of \(g(u) \)
- The sketch makes it easy to determine the range of values that \(Y \) can take on
- Example: \(a < X < b; \ g(u) = u^2; \ Y = X^2 \)
- \(0 < a \Rightarrow a^2 < Y < b^2 \)
- \(a < b \Rightarrow 0 \leq Y < \max(a^2, b^2) \)

Ask DAD for help! Draw a diagram!

- Sketch the function \(g(u) \) and mark the range of values of \(X \) on the horizontal axis
- This readily allows you to figure out the range of values (say, from \(s \) to \(t \)) that \(Y \) will take on
- Thus, you can immediately write down
 \(f_Y(v) = ??, \) for \(s < v < t \)
 \(f_Y(v) = 0 \) elsewhere
- I got 3 of 4 parts right. Worth at least 75% partial credit?
Continuing the good work...

- There are two ways to proceed from here
 - Method I: Figure out the CDF \(F_Y(v) \) and then differentiate the CDF to get \(f_Y(v) \)
 - Advantages:
 - already know that \(F_Y(v) = 0 \) for \(v < s \);
 - \(F_Y(v) = 1 \) for \(v > t \)
 - method always works
 - if you do it right!
 - Method II: Use a mystical magical formula

Trying Plan B instead ...

- Method II: Use the mystical magical formula in Theorem 7.1 (p. 239) of Ross
- Advantages:
 - when it works, it is easy to get the right answer
 - if you use it right, of course!
- Disadvantage:
 - method doesn’t always work as simply as the theorem seems to imply

Method I (continued)

- \(Y \) takes on values between \(s = c\cdot a + d \) and \(t = c\cdot b + d \)
- The CDF \(F_Y(v) = 0 \) for \(v < s \) and 1 for \(v > t \)
- For any number \(v \) such that \(s < v < t \),
 \(F_Y(v) = P(Y \leq v) = P(c\cdot X + d \leq v) = P(X \leq (v-d)/c) = F_X((v-d)/c) \)
- Hence, for \(s < v < t \), \(f_Y(v) = \) derivative of \(F_Y(v) \)
 \(= \) derivative of \(F_X((v-d)/c) = (1/c)\cdot f_X((v-d)/c) \)

Method I (continued)

- For \(s < v < t \), \(f_Y(v) = \) derivative of \(F_Y(v) \)
 \(= \) derivative of \(F_X((v-d)/c) = (1/c)\cdot f_X((v-d)/c) \)
- Since \(F_Y(v) \) is constant for \(v < s \) or \(v > t \), \(f_Y(v) = \) derivative of \(F_Y(v) \)
 \(= 0 \) in these regions
- \(f_Y(v) = (1/c)\cdot f_X((v-d)/c) \) holds for all real numbers \(v \) since if \(v > t = c\cdot b + d \), then \((v-d)/c > b \Rightarrow f_X((v-d)/c) = 0 \), etc.

Linear transformations

- \(Y = c\cdot X + d \) is a linear function of \(X \)
- Assume that \(d = 0 \). Then,
 \(f_Y(v) = (1/c)\cdot f_X((v-d)/c) = (1/c)\cdot f_X(v/c) \)
- The function \(f_X(v/c) \) is just \(f_X(v) \) stretched out by a factor of \(c \) (\(c > 1 \)) or squeezed in by a factor of \(c \) (\(c < 1 \))
- If horizontal scale expands by a factor \(c \), the vertical scale must compress by the same factor to keep the area the same
A graphical interpretation

\[
 f_Y(v) = \frac{1}{c} f_X\left(\frac{v}{c}\right)
\]

c > 1

Linear transformations (continued)

- \(Y = cX \) is a linear function of \(X \)
- \(f_Y(v) = \frac{1}{c} f_X\left(\frac{v}{c}\right) \)
- The general shape of \(f_Y(v) \) is the same as the general shape of \(f_X(u) \), but the horizontal and vertical scales are scaled inversely
- The constant term \(d \) just translates the pdf rightward by \(d \)
- Exercise: repeat for the case \(c < 0 \)

Linear transformations (continued)

- \(Y = cX \) is a linear function of \(X \)
- \(f_Y(v) = \frac{1}{c} f_X\left(\frac{v}{c}\right) \)
- The general shape of \(f_Y(v) \) is the same as that of \(f_X(u) \), but the horizontal and vertical axes are scaled inversely
- Example: Gamma RV \(Y \) with parameters \((t, \lambda)\) is just \(X/\lambda \) where \(X \) is a gamma RV with parameters \((t, 1)\)
- \(\lambda \) is the scale parameter

Gaussian random variables

- When \(X \) is a Gaussian RV, \(Y = cX + d \) is also a Gaussian RV (with different mean and variance)
- For \(c > 0 \), \(F_Y(v) = F_X\left(\frac{v-d}{c}\right) \)
- If \(X \) is \(N(\mu, \sigma^2) \), \(F_X(u) = \Phi((u - \mu)/\sigma) \)
- \(F_Y(v) = F_X\left(\frac{(v-d)}{c}\right) = \Phi\left((v-d)/c - (\mu)/\sigma\right) = \Phi\left((v- (c\mu+d))/c\sigma\right) \)
- \(Y \) is \(N(c\mu+d, c^2\sigma^2) \)

Some remarks on Gaussianity

- Given any arbitrary RV \(X \) with \(E[X] = \mu \) and \(\text{var}(X) = \sigma^2 \), \(E[Y] = E[cX + d] = c\mu + d \) and \(\text{var}(Y) = c^2\sigma^2 \)
- This holds for Gaussian RVs \(X \) also
- But, more important, \(Y \) also happens to be Gaussian with this mean and variance
- \(Y \sim N(c\mu+d, c^2\sigma^2) \)
- We can write down the pdf of \(Y \) directly after calculating its mean and variance

Even more remarks on Gaussianity

- That linear functions of Gaussian RVs are Gaussian RVs applies very generally
- Linear functions of multiple Gaussian RVs are Gaussian RVs
- The output of a linear system is a Gaussian random process if its input is a Gaussian random process
- GIGO = Gaussian In \Rightarrow Gaussian Out
- \(\text{var(output)} = \text{var(input)} \times \text{(energy in impulse response)} \)
Other applications of Method A

- Ross shows that if $Y = X^2$, then for $v \geq 0$

 $$f_Y(v) = \frac{f_X(\sqrt{v}) + f_X(-\sqrt{v})}{2\sqrt{v}}$$

- If $X \sim N(0, 1)$, then

 $$f_Y(v) = (2\pi v)^{-1/2} \exp(-v/2)$$

 which is a gamma pdf with parameters $(1/2, 1/2)$, i.e., a chi-square pdf with one degree of freedom.

- If $X \sim N(0, \sigma^2)$, then the gamma pdf parameters are $(1/2, 1/(2\sigma^2))$.

How Method B is applied

- The mystical magical formula in Ross’s Theorem 7.1 (p. 239) works as follows:

 - $v = g(u) = cu + d$, so $g^{-1}(v) = (v-d)/c$
 - derivative of $g^{-1}(v)$ is $1/c$
 - $f_Y(v) = f_X(g^{-1}(v)) \cdot \text{derivative of } g^{-1}(v)$

 $$= \frac{1}{c} f_X((v-d)/c)$$

 - The mystical magical formula gives the answer for $c > 0$ as well as for $c < 0$.

Why does Method B work, anyway?

- The mass in the interval $(u, u+\Delta u)$ on the horizontal (X) axis is transferred to the interval $(v, v+\Delta v)$ on the vertical (Y) axis.

How much mass is transferred?

- Mass in the interval $(u, u+\Delta u) \approx f_X(u) \cdot \Delta u$

 - Mass in the interval $(v, v+\Delta v) = f_Y(v) \cdot \Delta v$

 - $f_Y(v) \cdot \Delta v = f_X(u) \cdot \Delta u$. Note that $g(u) = v$

Putting it all together

- $f_Y(v) \cdot \Delta v = f_X(u) \cdot \Delta u$

 - $g(u) = v$, so $u = g^{-1}(v)$

 - $\Delta u/\Delta v = g^{-1}(v)$

 - $f_Y(v) = f_X(g^{-1}(v)) \cdot |g^{-1}(v)|$

When does Method B fail?

- Method B requires that $g(u)$ be monotone increasing or monotone decreasing for all u, (or at least for all u in the range of interest, viz. the range of values for X).

 - Method B works for the left-hand case but not for the right-hand case.
Can Method B be generalized?

- Yes, there is a more general version of Method B that does not require \(g(u) \) to be a monotone function.
- But the details are monotonous …
- And the method requires so much extra work in its applications that many times, one is, in effect, back to Method A.
- Do not rely on Method B; it is strictly a fair-weather friend!

A special application

- The mystical magical formula says that \(f_Y(v) = f_X(g^{-1}(v))/g'(u) \).
- Now suppose that we choose \(g(u) = F_X(u) \), i.e. \(g(u) \) is the CDF of \(X \).
- Why not? The CDF of \(X \) is a nice well-behaved monotone increasing function!
- \(Y = F_X(X) \) takes on values in \([0, 1]\)
- So, we only need to find \(f_Y(v) \) for \(0 < v < 1 \)

Pulling the rabbit out of the hat

- Remember that \(g(u) = v \) and \(u = g^{-1}(v) \).
- For any \(v, \ 0 < v < 1 \)
 \[f_Y(v) = f_X(g^{-1}(v))/g'(u) = f_X(u)/g'(u) \]
- If \(g(u) = F_X(u) \), then \(g'(u) = f_X(u) \), right?
- So, for any \(v \) between 0 and 1, \(f_Y(v) = 1 \) !!
- \(Y = F_X(X) \) is uniformly distributed on \((0, 1)\).
- Applying the CDF as a function to a RV \(X \) results in a uniform RV on \((0, 1)\).

Of great use in simulation

- Applying the CDF as a function to a RV \(X \) results in a uniform RV \(Y \) on \((0, 1)\).
- Suppose that we wish to create an RV \(X \) with a specified CDF \(F(\cdot) \).
- Given RV \(Y \) uniformly distributed on \((0, 1)\), we can apply the inverse function \(F^{-1}(\cdot) \) to \(Y \) to get an RV \(X \) with CDF \(F(\cdot) \).
- This technique is often used to simulate an RV \(X \) using the output of \texttt{rand()}.

An example of simulation

- Let \(Y \) be uniformly distributed on \((0, 1)\).
- We want \(X \) to be an exponential RV with parameter 1: \(F(u) = 1 - \exp(-u) \) for \(u \geq 0 \).
- For \(0 < v < 1 \), \(F^{-1}(v) = -\ln(1 - v) \).
- Thus, \(-\ln(1 - Y) \) is an exponential RV with parameter 1.
- So is \(-\ln(Y) \). Why?
- \(-\ln(\texttt{rand}()) \) simulates an exponential RV \(X \) with parameter 1.
- What does \(-\ln(\texttt{rand}())/\lambda \) simulate?

Summary

- We have discussed the methods used to compute the pmf or pdf of \(Y = g(X) \).
- If \(X \) is discrete, so is \(Y \).
- When \(X \) is continuous, \(Y \) can be discrete.
- When \(Y \) is continuous, \(f_Y(v) \) is found, and then differentiated to get \(f_Y(v) \).
- A magical formula sometimes gives easy answers, but requires care in its use.
- \(X = F^{-1}(\texttt{rand}()) \) simulates \(X \).