Hypothesis testing model
- One of $M \geq 2$ mutually exclusive hypotheses $H_0, H_1, \ldots, H_{M-1}$ is true
- X is a random variable whose value we can observe, and use, to decide which of the hypotheses is true
- If H_i happens to be the true hypothesis, then the pmf of X is $P_i(u)$.
- We can think of $P_i(u)$ as $p_X(u|H_i)$, the conditional pmf of X given that H_i is true.

The decision rule
- We observe the value of X and announce our decision as to which hypothesis we believe to be true.
- This decision may or may not coincide with reality — our decision may be H_i when in fact H_j is the true hypothesis.
- The decision rule (which we are free to choose as we wish) assigns a hypothesis (the decision!) to each possible value of X.

The likelihood matrix L
- Likelihood matrix L has M rows (one for each hypothesis) and N columns (one for each value taken on by X).
- The entry in the i-th row and j-th column is $P_i(u_j)$, the (conditional) probability that $X = u_j$ when H_i is the true hypothesis.
- The sum of the entries in each row is 1.
- The decision rule is specified by shading one entry in each column of L.

(Conditional) error probabilities
- The (conditional) probability of a correct decision given that H_i is true is the sum of the shaded squares on the i-th row.
- The (conditional) probability of error given that H_i is true is the sum of the unshaded squares on the i-th row.
- Many statisticians are very uncomfortable with calling these parameters conditional probabilities.

Maximum-likelihood decision rule
- The hypothesis for which the probability of the observation is the maximum is called the maximum-likelihood (ML) decision when that observation is made.
- For each observation (value of X), the ML decision rule maximizes the likelihood of the observation.
- Operationally, the ML rule says: shade the largest entry in each column of L.

Probabilities of error for ML rule
- The ML decision rule is just one of many possible decision rules, and the various (conditional) probabilities of error can be computed as described before.
- Exercise: The ML rule shades the largest entry in each column of L. But we can maximize the probability of a correct decision (when H_i is true) by choosing the largest entry in the i-th row. Why does this better rule not work?
Average error probability
- The (conditional) probability of an error (event E) given that the hypothesis H_i is true is denoted $p_i(E) = P(E|H_i)$
- By the theorem of total probability, $P(E) = \sum P(E|H_i) \cdot P(H_i) = \sum p_i(E) \cdot \pi_i$
- Many statisticians are very uncomfortable with the notion of probabilities being assigned to hypotheses

Better to be right than to be wrong!
- Let $C = E^c$ be the event that a correct decision is made. Then, $P(C) = \sum P(C|H_i) \cdot P(H_i) = \sum (1-p_i(E)) \cdot \pi_i$
- $P(C|H_i)$, the probability of a correct decision when hypothesis H_i is true is just the sum of the shaded entries on the i-th row of the likelihood matrix L
- $P(C)$ and $P(E)$ are conveniently calculated via the joint probability matrix

Likelihoods to joint probabilities
- The i-th row of the likelihood matrix L is just the conditional pmf of X given that H_i occurred
- If we multiply the i-th row by $\pi_i = P(H_i)$, we get $P\{X = u_j \cap H_i\}$, the probability that X has value u_j and that H_i is true
- Carrying out this operation on all the rows of L gives the joint probability matrix J whose (i,j)-th entry is $P\{X = u_j \cap H_i\}$

Properties of joint prob. matrix J
- $J = KL$ where K is a diagonal matrix $K = \text{diag}[\pi_0, \pi_1, \ldots, \pi_{M-1}]$
- J is a Venn diagram whose (i,j)-th entry is the joint probability $P\{X = u_j \cap H_i\} = P_i(u_j) \pi_i$
- The sum of all the entries in J is 1
- The column sums in J give us the unconditional pmf of X

Error probabilities from J
- For an arbitrary decision rule specified by shaded entries in L, the probability of a correct decision is $P(C) = \sum p_i(E) \cdot \pi_i$
- The probability of error is the sum of all the unshaded entries in J
- The multiplications by the π_i needed in the formula $P(E) = \sum p_i(E) \cdot \pi_i$ have all been taken care of while computing J from L

Maximize $P(C)$ by clever choice
- $P(C)$, the average probability of a correct decision, is the sum of the shaded entries in J
- There is one shaded entry in each column
- Which entries are to be shaded is up to us!
- We can maximize $P(C)$ (and thus minimize $P(E)$) by shading the largest entry in each column of J
- The corresponding decision rule is called a minimum-error-probability decision rule
A Bayes is a Bayes is a Bayes ...

- The minimum-error-probability decision rule chooses the largest entry in each column of J.
- The minimum-error-probability decision rule is also called a Bayes' or Bayesian decision rule.
- A maximum a posteriori probability (MAP or MAPP) decision rule.
- Minimum risk decision rule.
- Minimum cost decision rule.

The a posteriori probabilities

- Why is it called Bayes' rule?
- \(P(H_i|X = u_j) = \frac{P(X = u_j|H_i) \cdot \pi_i}{P(X = u_j)} \)
- \(P(X = u_j) \) is the j-th column sum in J.
- \(P(X = u_j|H_i) \cdot \pi_i \) is the (i,j)-th entry in J.

Example: Likelihood matrix

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

- Suppose that \(P(H_0) = 0.4 = P(H_3) \) and \(P(H_1) = 0.1 = P(H_2) \).

Example: Joint probability matrix

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>0.08</th>
<th>0.12</th>
<th>0.08</th>
<th>0.12</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1)</td>
<td>0.012</td>
<td>0.024</td>
<td>0.064</td>
<td>0.00</td>
<td>0.1</td>
</tr>
<tr>
<td>(H_2)</td>
<td>0.016</td>
<td>0.01</td>
<td>0.01</td>
<td>0.064</td>
<td>0.1</td>
</tr>
<tr>
<td>(H_3)</td>
<td>0.00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- \(P(H_0) = 0.4 = P(H_3) \)
- \(P(H_1) = 0.1 = P(H_2) \)

The a posteriori probability matrix

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>0.741</th>
<th>0.438</th>
<th>0.292</th>
<th>0.349</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1)</td>
<td>0.111</td>
<td>0.088</td>
<td>0.234</td>
<td>0.000</td>
</tr>
<tr>
<td>(H_2)</td>
<td>0.148</td>
<td>0.036</td>
<td>0.036</td>
<td>0.186</td>
</tr>
<tr>
<td>(H_3)</td>
<td>0.000</td>
<td>0.438</td>
<td>0.438</td>
<td>0.465</td>
</tr>
</tbody>
</table>

- \(P(H_0) = 0.4 = P(H_3) \)
- \(P(H_1) = 0.1 = P(H_2) \)

- Divide each entry in J by its column sum to convert the joint probability matrix J into the a posteriori probability matrix.
Rev. Thomas Bayes’ contributions

- Formula for finding $P(B | A)$ from $P(A | B)$
- The philosophical argument that in making decisions based on the observation that X had value u_j, one must look at inverse probabilities $P(H_i | X = u_j)$ (i.e. a posteriori probabilities) instead of the likelihoods $P(X = u_j | H_i)$
- Decide in favor of the hypothesis with the largest a posteriori probability (MAP)

The ECE 313 simplification

- The a posteriori probability matrix is found by dividing each entry in J, the joint probability matrix, by the corresponding column sum
- This does not change the relative values of the entries in the column — the largest entry in a column is still the same
- Don’t bother computing the a posteriori probability matrix! Just work with J to find the Bayes’ rule!

Bayes’ rule includes the ML rule...

- Bayes’ decision rule depends on what the probabilities π_i of the hypotheses are
- Consider the special case $\pi_i = M^{-1}$ for all i, that is, all M hypotheses are equally likely
- Since J is found by multiplying the i-th row of L by $\pi_i = M^{-1}$ for all i, the largest entry in a column of J is in the same position as the largest entry in L
- Moral: ML decision rule = Bayes’ decision rule for equally likely hypotheses

How much is 2 + 2?

- Many statisticians and philosophers dislike Bayesian decision rules intensely
- “There are lies, there are damned lies, and there are statistics, … and then there are Bayes’ decision rules”
- “The answer can be made to come out to whatever you want it to be!”
- “Your personal prejudices and beliefs get injected into the problem”

Why is Bayes’ decision rule hated?

- In many instances, it is difficult to assign probabilities to hypotheses
- Example: Almost all U.S. military radars have never ever “painted” an actual enemy target. What is π_1 in this case?
- In many instances where facts are hard to come by, the probabilities of hypotheses are based on beliefs
- “Your personal prejudices and beliefs get injected into the problem”

Counterattack of the Bayesians

- Bayesian statisticians claim that the non-Bayesian people are using Bayesian statistics but refusing to admit the fact
- Non-Bayesians are implicitly assuming that the hypotheses are equally likely when they formulate the ML decision rule
- The non-Bayesians are also injecting their (unstated) belief that the hypotheses are equally likely when they make the implicit assumption
Consider the likelihood matrix and joint probability matrices shown below:

\[
\begin{array}{ccc}
H_0 & 0.4 & 0.6 \\
H_1 & 0.2 & 0.8 \\
\end{array}
\quad
\begin{array}{cc}
L & J \\
0.4\pi_0 & 0.6\pi_0 \\
0.2\pi_1 & 0.8\pi_1 \\
\end{array}
\]

- If \(\pi_0/\pi_1 > 8/6\), that is, if \(\pi_0 > 4/7\), \(H_1\) will never be chosen by the MAP rule.
- If \(\pi_0/\pi_1 < 1/2\), that is, if \(\pi_0 < 1/3\), \(H_0\) will never be chosen by the MAP rule.

Except when some entries in \(L\) are zero, it is always possible to find some probability assignment for the hypotheses such that the MAP rule chooses only one hypothesis.

In contrast, the ML rule cannot always choose only one hypothesis.

No row in \(L\) dominates another row (that is, every entry on the \(i\)-th row cannot be larger than the corresponding entry on the \(j\)-th row). Why ever not?

The Bayesian approach is very valuable if used carefully and thoughtfully.

The Bayesian approach can be abused very easily, and used to provide support for any theory that one wants to make up!

The Bayesian approach should not be discarded out of hand as useless.

Kitchen knives are very useful tools but they can be very dangerous too!

The approach to decision theory taken in ECE 313 will puzzle most statisticians.

Statisticians use somewhat different terminology and somewhat different methods to derive the results that we obtained so easily via the \(L\) and \(J\) matrices.

False alarm = Type I error
False dismissal = Type II error

We shall consider the simple case of two hypotheses \(H_0\) and \(H_1\) with corresponding pmfs \(p_0(u)\) and \(p_1(u)\) for the observation \(X\).

If \(X\) is observed to have the value \(u_i\), then the likelihood ratio \(\Lambda\) has value

\[
\Lambda = \frac{p_1(u_i)}{p_0(u_i)}
\]

As the name implies, \(\Lambda\) is the ratio of the likelihoods \(p_1(u_i)\) and \(p_0(u_i)\) of the \(X\) value.

The value of the likelihood ratio \(\Lambda\) depends on the observation, that is, the observed value of the random variable \(X\).

The likelihood ratio \(\Lambda\) can be viewed as a random variable that happens to be a function of the random variable \(X\).

Statisticians say that the likelihood ratio summarizes everything that we need to know about the decision problem.
The likelihood ratio test (LRT)
- Decision rules can be stated in terms of a “test” on the likelihood ratio.
- Example: For a binary hypothesis testing problem, L has two rows. The i-th column has two entries $p_0(u_i)$ and $p_1(u_i)$, and the ML rule decides in favor of the larger.
- Statisticians say that we are comparing the likelihood ratio Λ to 1, and choosing H_0 or H_1 according as $\Lambda < 1$ or $\Lambda > 1$.

The ML rule as an LRT
- The ML decision rule is stated in terms of an LRT via the following picture.
- If u_i is the observed value of X, then compute the value of the likelihood ratio $\Lambda = \frac{p_1(u_i)}{p_0(u_i)}$.
- $\Lambda \geq 1$ chooses H_1 if $\Lambda > 1$ and H_0 if $\Lambda < 1$.

More on the LRT
- The LRT “choose H_0 if $\Lambda < 1$; choose H_1 if $\Lambda > 1$” is called a threshold test on the likelihood ratio Λ because we are comparing Λ to the threshold 1 and choosing H_1 if Λ exceeds the threshold.
- The MAP decision rule is also a threshold test on the likelihood ratio!

The MAP rule as an LRT
- The MAP decision rule is stated in terms of an LRT via the following picture.
- If u_i is the observed value of X, then compute the value of the likelihood ratio $\Lambda = \frac{p_1(u_i)}{p_0(u_i)}$.
- $\Lambda \geq \frac{\pi_0}{\pi_1}$ chooses H_1 if $\Lambda > \frac{\pi_0}{\pi_1}$ and H_0 if $\Lambda < \frac{\pi_0}{\pi_1}$.

Does the MAP rule make sense?
- The MAP rule is the MAP rule for $\pi_0 = \pi_1$.
- The ML rule accepts H_1 if $\Lambda > 1$.
- If $\pi_0 > \pi_1$, the MAP rule accepts H_1 only if $\Lambda > \frac{\pi_0}{\pi_1}$, where we know that $\frac{\pi_0}{\pi_1} > 1$.
- When H_1 is less likely than H_0, the MAP rule insists that it will accept H_1 only if there is strong evidence in favor of H_1.
- A Λ value barely larger than 1 is not enough; it better be “much larger”.

Decision regions
- Error probabilities are obtained quite easily via L and J.
- Purely in terms of symbols, let the set of all possible values taken on by X be partitioned into sets Γ_0 and Γ_1.
- The decision regions Γ_0 and Γ_1 specify the decision rule.
- If the observed value of X is in Γ_1, then decide that H_1 is true.
Error probabilities

- \(p_0(E) = P(E|H_0) = P(X \in \Gamma_1 | H_0) \)
- \(p_0(E) = P(E|H_0) = \sum_j p_0(u) \) where the subscript on the summation sign means that the summation is over the set \(\Gamma_1 \)
- Similarly, \(p_1(E) = P(E|H_1) = \sum_0 p_1(u) \)
- \(P(E) = \pi_0 p_0(E) + \pi_1 p_1(E) = \pi_0 \sum_j p_0(u) + \pi_1 \sum_0 p_1(u) \)

Average error probability

- \(\hat{P}(E) = \pi_0 \sum_j p_0(u) + \pi_1 \sum_0 p_1(u) \)
- Now add and subtract \(\pi_0 \sum_0 p_0(u) \) to get
 \[P(E) = \pi_0 \sum_j p_0(u) + \pi_1 \sum_0 p_1(u) + \pi_0 \sum_0 p_0(u) - \pi_0 \sum_0 p_0(u) \]
- In this sum, the first term is fixed, but we can affect the total by careful choice of \(\Gamma_0 \)

Minimum error probability

- \(P(E) = \pi_0 + \sum_0 [\pi_1 p_1(u) - \pi_0 p_0(u)] \) where the sum is over the set \(\Gamma_0 \)
- The choice of the set \(\Gamma_0 \) is up to us
- How can we choose \(\Gamma_0 \) to minimize \(P(E) \)?
- If we include in \(\Gamma_0 \) every value (and only those values) of \(X \) for which \(\pi_1 p_1(u) - \pi_0 p_0(u) < 0 \) then the sum is as negative as possible

Costs and risks

- \(C_{ij} \) is the cost if we decide that hypothesis \(H_j \) is true when in fact hypothesis \(H_i \) is true
- \(C_{ij} \) could be negative (indicating a reward) or it could be positive (representing the fixed costs associated with experiment)
- Assumption: \(C_{ij} > C_{ij} \)
- Costs are also called risks
- Can costs be determined?

The average risk or cost

- Over a large number of trials, we incur different costs on different trials
- The average cost or the expected value of the cost depends on the choice of the decision regions \(\Gamma_0 \) and \(\Gamma_1 \)
- Average cost
 \[= \sum_0 [\pi_1 p_1(u) | C_{1,0} + [\pi_1 \sum_0 p_1(u)] C_{0,1} + [\pi_0 \sum_0 p_0(u)] C_{0,0} + [\pi_1 \sum_1 p_1(u)] C_{1,1} \]
Minimum average risk or cost

- Average cost
 \[\pi_0 \sum_1 p_0(u)C_{1,0} + [\pi_0 \sum_1 p_1(u)]C_{0,1} + [\pi_0 \sum_0 p_0(u)]C_{2,0} + [\pi_1 \sum_1 p_1(u)]C_{1,1} \]
- Same trick of adding and subtracting gives that the average cost can be minimized by comparing the likelihood ratio \(\Lambda \) to the threshold \((C_{1,0} - C_{0,0})\pi_0 / (C_{0,1} - C_{1,1})\pi_1 \)
- If \(C_{1,0} = C_{0,1} \) and \(C_{0,0} = C_{1,1} \), we get the MAP rule!

Bayes' risk or cost

- The average cost or risk of the minimum cost rule is called the Bayes' risk
- We will not discuss costs any further (or require you to understand them on exams)
- For \(M \geq 3 \) hypotheses, the calculations are messier — see the Lecture Notes from Fall 1997 on the class web page for some details if you are interested

Summary

- We have discussed the minimum error probability decision rule (a.k.a. MAP or maximum a posteriori probability or Bayes' rule) at some length
- We introduced the notion of the likelihood ratio \(\Lambda \) and the likelihood ratio test
- The ML decision rule and MAP decision rule are threshold tests on \(\Lambda \)
- The minimum-cost rule is also a threshold test on \(\Lambda \)