Hypothesis testing model

- One of M mutually exclusive hypotheses $H_0, H_1, \ldots, H_{M-1}$ is true
- X is a random variable whose value we can observe, and use, to decide which of the hypotheses is true
- If H_i happens to be the true hypothesis, then the pmf of X is $P_i(u)$
- To avoid trivialities, we assume that $M \geq 2$

The decision rule

- We observe the value of X and announce our decision as to which hypothesis we believe to be true
- This decision may or may not coincide with reality — our decision may be H_i when in fact H_j is the true hypothesis
- The decision rule (which we are free to choose as we wish) assigns a hypothesis (the decision!) to each possible value of X

Specifying the decision rule

- We can specify the decision rule as a table that lists all the values of X and the corresponding decisions
- After observing the value of X, we merely look up our decision in the table and announce it!
- The process is completely mechanical (or computerized?) — observe X and look up the decision from the table

General remarks on decision rules

- There are M choices of hypothesis for the decision for each of the N values of X
- Thus, there are M^N different decision rules that we could use
- If $M > N$, some hypotheses will never be chosen for any value of X
- If $M < N$, several values of X will result in the same decision

Simple example of a decision rule

- Consider a binary hypothesis test in which the observation X takes on only the values 1 and 2
- Our decision rule is as follows
 - If $X = 1$, decide H_0 is the true hypothesis
 - If $X = 2$, decide H_1 is the true hypothesis
- Remember that the decision might not be correct (or it might be correct)
Deterministic vs randomized rules

- The decision rule that we have described is called a deterministic decision rule.
- A randomized decision rule is one in which, after observing X, we choose the decision "randomly" with specified probabilities.
- If $X = 1$, toss a coin with $P(H) = 0.7$ and decide H_0 if Heads, H_1 if Tails.
- If $X = 2$, toss a coin with $P(H) = 0.25$ and decide H_0 if Heads, H_1 if Tails.

Deterministic \subset randomized

- If $X = 1$, toss a coin with $P(H) = 0.7$ and decide H_0 if Heads, H_1 if Tails.
- If $X = 2$, toss a coin with $P(H) = 0.25$ and decide H_0 if Heads, H_1 if Tails.
- Our deterministic decision rule (H_0 if $X = 1$, H_1 if $X = 2$) is trivially a randomized rule.
- We merely toss a two-headed coin if $X = 1$ and a two-tailed coin if $X = 2$!!

A sigh of relief...

- Randomized decision rules are more "powerful" than deterministic rules, e.g. when $M > N$...
- Randomized decision rules provide more elegant solutions than deterministic rules.
- But, they add more complications to life.
- We will not discuss randomized rules in detail any further — just be aware (beware?) of their existence.

L is the likelihood matrix

- The pmf of X depends on which one of M hypotheses happens to be true.
- Let X take on values u_1, u_2, … u_N.
- We write the pmfs in an likelihood array (or likelihood matrix) of M rows (one for each hypothesis) and N columns (one for each of the possible values of X).
- We denote this $M \times N$ matrix by L (for likelihood).

Properties of the likelihood matrix

- L is an array of M rows and N columns.
- Each row corresponds to a hypothesis.
- Each column corresponds to one of the values taken on by X.
- The entry in the i-th row and j-th column is $P_i(u_j)$, the probability that $X = u_j$ when H_i is the true hypothesis.
- The sum of the entries in each row is 1.

Example of a likelihood matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- The values of X are shown in orange above the top row.
- Each row is a pmf; some values are 0.
Why not call it a probability matrix?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- For each of the possible observed values of X, the entries in that column are not a probability assignment for the H_i.

The decision rule and L

- We can specify the decision rule via the likelihood matrix L as follows.
- For each value of X, shade the entry on the row corresponding to the decision for this value.
- There is only one shaded entry in each column.
- It is allowable for a particular hypothesis to not be the choice in any column.

How to choose the decision rule?

- We now know how to specify a decision rule via the likelihood matrix L.
- We also know how to calculate error probabilities for any given decision rule — the sum of the unshaded entries on each row of L is the error probability when that hypothesis is the true hypothesis.
- But how do we choose the decision rule?
- How do we choose rationally?

Decision rule specified via L

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- There is only one shaded entry in each column.
- Not every hypothesis must be chosen.

Is the decision incorrect?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Suppose that H_0 is the true hypothesis.
- What is the probability that the decision is wrong?

Suppose H_0 is the true hypothesis

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- If X has value 0, the decision is H_0.
- If X takes on any value other than 0, the decision is not H_0.
Probability of error when H_0 is true

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- $P(\text{error when } H_0 \text{ is true}) = P(X \neq 0)$
- $P(X \neq 0)$ = sum of unshaded entries on the H_0 row of the likelihood matrix

Probability of error when H_1 is true

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- More generally, if H_i is the true hypothesis, $P(\text{error})$ = sum of unshaded entries on the H_i row of the likelihood matrix

Probability of error when H_2 is true

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H_1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H_2</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H_3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- $P(\text{error}) = 0.8, 0.36, 0.36, \text{ and } 0.7$ according as H_0, H_1, H_2, H_3 are the true hypotheses

Maximum-likelihood decision rule I

- We know one of the hypotheses is true
- We have observed the value of X, say u_3
- Under which hypothesis would the event already observed, viz. $(X = u_3)$, have had the largest probability?
- The hypothesis which maximizes this probability is the maximum-likelihood decision when $(X = u_3)$ is observed
- Repeat for other values of X

Maximum-likelihood decision rule II

- The hypothesis for which the probability of the observation is the maximum is called the maximum-likelihood decision when that observation is made
- Statisticians insist that calling these things probabilities is a grievous sin — they are likelihoods, not probabilities!
- For each observation, the maximum-likelihood decision rule maximizes the likelihood of the observation

Finding the ML decision rule

- Under which hypothesis would the already observed event $(X = u_3)$ have had the largest probability (or likelihood)?
- Which of the probabilities (likelihoods) $P_i(u_3)$ is the largest?
- Remember that $P_i(u)$ is the pmf of X when H_i is the true hypothesis
- Operationally, the ML rule says: shade the largest entry in each column of L
This is a maximum-likelihood rule!

<table>
<thead>
<tr>
<th>H₀</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.12</td>
<td>0.16</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.24</td>
<td>0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.64</td>
<td>0.64</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Notice that the largest entry in each column is shaded.
- But what about the column for X = 1??

This is an ML rule too!

<table>
<thead>
<tr>
<th>H₀</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.12</td>
<td>0.16</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.24</td>
<td>0.01</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.64</td>
<td>0.64</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Which 0.3 entry should we choose?
- It depends on which error probability we want to make smaller.

The radar system problem again

- X is the number of echoes detected by the radar receiver
- H₀ : X ~ Binom(n, p₀)
- H₁ : X ~ Binom(n, p₁) where p₀ << p₁
- The likelihood matrix has 2 rows and n+1 columns
- k-th column entries are P₀(k) and P₁(k)
- \[n^k p_0^k (1 - p_0)^{n-k} \] and \[n^k p_1^k (1 - p_1)^{n-k} \]

Which is larger?

- Which is larger?
- \[n^k p_0^k (1 - p_0)^{n-k} \] or \[n^k p_1^k (1 - p_1)^{n-k} \]?
- The answer depends on the value of k
- Take the logarithm of the ratio \(P_1(k)/P_0(k) \)
- If \(k \cdot \ln(p_1/p_0) + (n-k) \cdot \ln[(1-p_1)/(1-p_0)] > 0 \), then \(P_1(k) > P_0(k) \) ⇒ the ML rule says H₁
- If \(k > n \cdot \ln[(1-p_0)/(1-p_1)]/\ln(p_1/p_0) + \ln[(1-p_0)/(1-p_1)] \), say H₁

ML decision rule in the radar problem

- H₀ : X ~ Binom(n, p₀)
- H₁ : X ~ Binom(n, p₁) where p₀ < p₁
- The maximum-likelihood decision rule in terms of L looks something as shown

\[
\theta_{\text{ML}} = n \cdot \ln[(1-p_0)/(1-p_1)]/\ln(p_1/p_0) + \ln[(1-p_0)/(1-p_1)]
\]

where the "break-point" is given by the maximum-likelihood threshold \(\theta_{\text{ML}} \)

ML decision rule in words

- H₀ : X ~ Binom(n, p₀)
- H₁ : X ~ Binom(n, p₁) where p₀ < p₁
- The maximum-likelihood decision rule is as follows: If the observed value of X exceeds the maximum-likelihood threshold

\[
\theta_{\text{ML}} = n \cdot \ln[(1-p_0)/(1-p_1)]/\ln(p_1/p_0) + \ln[(1-p_0)/(1-p_1)]
\]

then announce the decision as H₁ (the target is present). Else announce H₀
Error probabilities for ML decision

- \(H_0 : X \sim \text{Binom}(n, p_0) \)
- \(H_1 : X \sim \text{Binom}(n, p_1) \) where \(p_0 < p_1 \)
- The maximum likelihood decision rule in terms of \(L \) looks something as shown
- False alarm probability = sum of
- False dismissal probability = sum of

where the "break-point" is given by the maximum-likelihood threshold \(\theta_{ML} \).

Back to general case

- We know how to calculate the various error probabilities associated with an arbitrarily-chosen decision rule
- What is the average error probability of the decision rule?
- What do you mean, average?
- There is no such thing as an average error probability
- A hypothesis is either true, or it isn’t true. Where does probability get into it?

What if we repeat the test often?

- If we repeat the hypothesis test over and over; on some trials, \(H_0 \) will be true while on other trials, \(H_1 \) will be true, and on still other trials, \(H_2 \) will be true, and so on
- On some trials, the chances of making an error will be the error probability when \(H_0 \) is true, on other trials, we will incur the error probability when \(H_1 \) is true, and on still other trials, we will incur the error probability when \(H_2 \) is true, and so on

Does probability exist?

- Over a very large number \(N \) of hypothesis tests, hypothesis \(H_i \) will be true roughly \(N \cdot P(H_i) \) times
- Non-Bayesian statistician: Stop right there! You cannot talk of the probability that a hypothesis is true; it makes no sense!
- Either a hypothesis is true, or it is not true (in which case some other hypothesis is true, but there is nothing probabilistic here)
- End of discussion

We pretend that probability exists

- Over a very large number \(N \) of hypothesis tests, hypothesis \(H_i \) will be true (say) \(N_i \) times, and on these \(N_i \) tests we will incur error probability \(p_i(E) \)
- The average of these error probabilities is \((1/N) \sum p_i(E) \cdot N_i \)
- Over a very large number \(N \) of hypothesis tests, we can pretend that \(N/N \cdot P(H_i) \) the probability that the hypothesis \(H_i \) is true

Conditional probability exists, too

- Over a very large number \(N \) of hypothesis tests, we can pretend that \(N/N \cdot P(H_i) \) the probability that the hypothesis \(H_i \) is true
- We can think of \(p_i(E) \) as the conditional probability of an error given that the hypothesis \(H_i \) is true
- \(p_i(E) = P(E|H_i) \)
- \((1/N) \sum p_i(E) \cdot N_i = \sum P(E|H_i) \cdot P(H_i) = P(E) \)
- Holy theorem of total probability, Batman!
The average error probability

- The average probability of making an erroneous decision is
 \[P(E) = \sum P(E|H_i)P(H_i) \]
- Here \(P(E|H_i) \), the error probability when hypothesis \(H_i \) is true is just the sum of the unshaded entries on the i-th row of the likelihood matrix \(L \)
- The i-th row of \(L \) is just the conditional pmf of \(X \) given that \(H_i \) is true (i.e. occurred), that is, it is \(p_{X|H_i}(u) \)

Better to be right than to be wrong!

- The average probability of making a correct decision is
 \[P(C) = \sum P(C|H_i)P(H_i) \]
- Here \(P(C|H_i) \), the probability of a correct decision when hypothesis \(H_i \) is true is just the sum of the shaded entries on the i-th row of the likelihood matrix \(L \)
- We now convert the likelihood matrix into the joint probability matrix

Likelihoods to joint probabilities

- The i-th row of the likelihood matrix \(L \) is just the conditional pmf of \(X \) given that \(H_i \) is true (i.e. occurred)
- If we multiply the i-th row by \(P(H_i) \), we get the probabilities that \(X \) has the various values and that \(H_i \) is true
- Carrying out this operation on all the rows of \(L \) gives a matrix called the joint probability matrix \(J \)

Properties of joint prob. matrix \(J \)

- For \(0 \leq i \leq M-1 \), if we multiply the i-th row of \(L \) by \(P(H_i) \), we get a matrix called the joint probability matrix \(J \)
- \(J = KL \) where \(K \) is a diagonal matrix
- \(K = \text{diag}[P(H_0), P(H_1), \ldots, P(H_{M-1})] \)
- \(J \) is a giant Venn diagram whose \((i,j)\)-th entry is the joint probability \(P\{X = u_j \cap H_i\} \)
- The sum of all the entries in \(J \) is 1

More joint prob. matrix properties

- For \(0 \leq i \leq M-1 \), if we multiply the i-th row of \(L \) by \(P(H_i) \), we get a matrix called the joint probability matrix \(J \)
- The sum of all the entries in \(J \) is 1
- Since the row sums in \(L \) were 1, the row sums in \(J \) are just the \(P(H_i) \)
- The column sums in \(J \) give us the unconditional pmf of \(X \)

Example: Likelihood matrix

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(H_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.2)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>(0.12)</td>
<td>(0.24)</td>
<td>(0.64)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>(0.16)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.64)</td>
</tr>
<tr>
<td>(0.0)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

- Suppose that \(P(H_0) = 0.4 = P(H_3) \) and \(P(H_2) = 0.1 = P(H_3) \)
Example: Joint probability matrix

<table>
<thead>
<tr>
<th></th>
<th>H₀</th>
<th>H₁</th>
<th>H₂</th>
<th>H₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.08</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>1</td>
<td>0.012</td>
<td>0.024</td>
<td>0.064</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.016</td>
<td>0.01</td>
<td>0.01</td>
<td>0.064</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- \(P(H₀) = 0.4 = P(H₃) \)
- \(P(H₁) = 0.1 = P(H₂) \)

Conditional probabilities of C

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>H₁</td>
<td>0.12</td>
<td>0.24</td>
<td>0.64</td>
<td>0.0</td>
</tr>
<tr>
<td>H₂</td>
<td>0.16</td>
<td>0.1</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>H₃</td>
<td>0.00</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- \(P(C|H₀) = 0.2, P(C|H₁) = 0.64, \)
- \(P(C|H₂) = 0.64, \) and \(P(C|H₃) = 0.3 \)
- \(P(C) = (0.2+0.3)	imes0.4 + 0.64\times2\times0.1 = 0.328 \)

P(Correct Decision) from J

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀</td>
<td>0.08</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>H₁</td>
<td>0.012</td>
<td>0.024</td>
<td>0.064</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂</td>
<td>0.016</td>
<td>0.01</td>
<td>0.01</td>
<td>0.064</td>
</tr>
<tr>
<td>H₃</td>
<td>0.00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- \(P(C) = \) sum of shaded entries
 - \(= 0.08 + 0.064 + 0.064 + 0.12 \)
 - \(= 0.328 \)

Correct decision probability and J

- For an arbitrary decision rule specified by shading entries in L, the (average) probability of a correct decision is the sum of the corresponding shaded entries in J.
- The (average) probability of error is the sum of all the unshaded entries in J.
- L and J provide a simple procedure for computing various error probabilities.
- L gives conditional error probabilities; J gives average error probabilities.

Maximize P(C) by clever choice

- \(P(C), \) the average probability of a correct decision, is the sum of the shaded entries in J.
- There is one shaded entry in each column.
- Which entries are to be shaded is up to us!
- We can maximize \(P(C) \) (and thus minimize \(P(E) \)) by shading the largest entry in each column of J.
- The corresponding decision rule is called a minimum-error-probability decision rule.

P(C) for Minimum-Error-Prob. rule

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀</td>
<td>0.08</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>H₁</td>
<td>0.012</td>
<td>0.024</td>
<td>0.064</td>
<td>0.00</td>
</tr>
<tr>
<td>H₂</td>
<td>0.016</td>
<td>0.01</td>
<td>0.01</td>
<td>0.064</td>
</tr>
<tr>
<td>H₃</td>
<td>0.00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
</tr>
</tbody>
</table>

- \(P(C) = \) sum of shaded entries
 - \(= 0.08 + 0.12 + 0.12 + 0.16 \)
 - \(= 0.48 > 0.328 \)
Summary

- We studied how to set up decision rules in some rational manner
- The ML decision rule chooses the largest entry in each column of the likelihood matrix L
- The joint probability matrix J is obtained by multiplying each row of L by the probability of the hypothesis
- The minimum-error-probability decision rule chooses the largest entry in each column of J