Reminders

- Axiomatic theory of probability
- The set of all possible outcomes of an experiment is the sample space \(\Omega \)
- Events are subsets of \(\Omega \)
- An event is said to have occurred if the outcome of the experiment is a member of the event (that is, subset of \(\Omega \))
- \(A \) and \(A^c \) are a partition of \(\Omega \)
- On every trial, one of \(A \) and \(A^c \) must occur

20-20 hindsight is a wonderful thing

- Once the experiment has been performed and the outcome is known, we have perfect and complete knowledge
- For each pair of events \(A \) and \(A^c \), we can tell which one occurred and which one didn’t — just check which set \(A \) or \(A^c \) the observed outcome belongs to!
- There is no probabilistic consideration any more, and we do not need to think about the chances of \(A \) (or \(A^c \)) occurring

A little learning is a dangerous thing...

- Now suppose that the experiment has been performed, but we do not know the outcome exactly
- All we know is that the outcome is some member of the event \(A \), but we do not know which member of \(A \) it is
- Put another way, we are told that the event \(A \) has occurred, but nothing else
- To avoid trivial cases, assume that \(A \) is not a singleton or elementary event

... B or \(\sim B \)? That is the question...

- The experiment has been performed and we know that the event \(A \) has occurred, that is, the outcome is some member of \(A \)
- Did the event \(B \) occur? or did \(B^c \) occur?
- Unlike the case of perfect knowledge, we cannot tell whether \(B \) or \(B^c \) occurred
- \(AB \) and \(AB^c \) are a partition of \(A \)
- If the outcome \(\in AB \), then \(B \) occurred; if the outcome \(\in AB^c \), then \(B^c \) occurred

The exorcism did not work...

- The experiment has been performed and we know that the event \(A \) occurred, that is, the outcome is some member of \(A \)
- We cannot tell for sure whether \(B \) occurred
- We have not exercised the probability from the problem as yet — A probability question still continues to plague us
- Question: What are the chances that \(B \) occurred? in view of the new knowledge that event \(A \) is known to have occurred?

A mind like a steel trap...

- Question: What are the chances that \(B \) occurred? in view of the new knowledge that event \(A \) is known to have occurred?
- One (stupid?) answer to this question is that the chances that \(B \) occurred are still what they always were, viz. \(P(B) \)
- “Don’t bother me with facts; my mind is made up!”
- This ostrich-like approach is wrong, at least in some cases
Refusing to face the facts…

- Question: What are the chances that B occurred? In view of the new knowledge that event A is known to have occurred?
 - Left diagram: AB = ∅. Obviously, if A occurred, B cannot have occurred.
 - Right diagram: AB = A. Obviously, if A occurred, B must also have occurred.

Swaying every which way...

- More generally, even when the special cases AB = ∅ or AB = A do not hold, it is still reasonable to change the value of P(B) to reflect the information obtained from knowing that A occurred.
- Probabilities are beliefs, and we can and should revise them as we grow wiser.
 - Growing older is mandatory; growing wiser is optional.

What’s in a name?

- The (original) value of P(B) is called the unconditional or a priori probability of B.
- Here a priori means “before the fact” or prior to the experiment being performed.
- Given that A occurred, the revised chances of B occurring are called the conditional probability of B given A and denoted by P(B|A).
- Read this as “probability of B given A”.

Definition of conditional probability

- The conditional probability of B given A is denoted by P(B|A).
- Read this as “the probability of B given A” or “the probability of B conditioned on A”.
- A is called the conditioning event.
- Definition: If P(A) > 0, P(B|A) is defined as
 \[P(B|A) = \frac{P(AB)}{P(A)} \]

Special cases

- Left diagram: AB = ∅. Obviously, if A occurred, B cannot have occurred.
 - P(B|A) = P(AB)/P(A) = 0
- Right diagram: AB = A. Obviously, if A occurred, B must also have occurred.
 - P(B|A) = P(AB)/P(A) = P(A)/P(A) = 1

An example

- Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 6 given that the dice are showing different faces?
- Critique of statement: Problems on conditional probability are often stated in the careless manner above. A conditional probability is being asked for, but the word conditional has been left out!
Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 6 given that the dice are showing different faces?

Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 6 given that the dice are showing different faces?

Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 7 given that the dice are showing different faces?

Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 7 given that the dice are showing different faces?

Example (continued):

Example (changed a bit):

Example (changed a bit, continued):

- Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 6 given that the dice are showing different faces?
 - \(P(A) = \frac{30}{36} = \frac{5}{6} \)
 - \(P(B) = \frac{5}{36} \)
 - \(AB = \{(1,5), (2,4), (4,2), (5,1)\} \)
 - \(P(AB) = \frac{4}{36} \)
 - \(P(B|A) = \frac{P(AB)}{P(A)} = \frac{4/36}{30/36} = \frac{4}{30} = \frac{2}{15} < P(B) \)

- Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 6 given that the dice are showing different faces?
 - \(A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\} \)
 - \(B = \{(1,5), (2,4), (3,3), (4,2), (5,1)\} \)
 - \(AB = \{(1,5), (2,4), (4,2), (5,1)\} \)
 - \(P(A) = \frac{30}{36} = \frac{5}{6} \)
 - \(P(B) = \frac{5}{36} \)
 - \(P(AB) = \frac{4}{36} \)
 - \(P(B|A) = \frac{P(AB)}{P(A)} = \frac{4}{30} = \frac{2}{15} < P(B) \)

- Example: Two fair dice are rolled. What is the probability that the sum of the two faces is 7 given that the dice are showing different faces?
 - \(A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\} \)
 - \(B = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\} \)
 - \(C = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\} \)
 - \(P(C) = \frac{6}{36} = \frac{1}{6} < P(B) \)
 - \(AC = C \)
 - \(P(C|A) = \frac{P(AC)}{P(A)} = \frac{6/36}{30/36} = \frac{1}{5} < P(C) \)
Example: Two fair dice are rolled. What is the probability that the first die is showing a 6 given that the dice are showing different faces?

- \(A = \{ \text{dice are showing different faces} \} \)
- \(P(A) = \frac{30}{36} = \frac{5}{6} \)
- \(D = \{ \text{first die shows a 6} \} = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} \)
- \(P(D) = \frac{6}{36} \)
- \(AD = \{(6,1), (6,2), (6,3), (6,4), (6,5)\} \)

\[
P(D | A) = \frac{P(AD)}{P(A)} = \frac{\frac{5}{36}}{\frac{30}{36}} = \frac{1}{6} = P(D)
\]

So, did we learn anything?

- The three different problems comprising the example showed that a conditional probability can be smaller, larger, or the same as, the unconditional probability
- They did?
 - \(P(B | A) = \frac{2}{15} < P(B) = \frac{5}{36} \)
 - \(P(C | A) = \frac{1}{5} > P(C) = \frac{1}{6} \)
 - \(P(D | A) = \frac{1}{6} = P(D) = \frac{1}{6} \)

Classical approach

- The definition of conditional probability is motivated by considerations arising from the classical probability viewpoint
- If \(|\Omega| = n \) and \(|A| = k \), then the reduced sample space consists of just the set \(A \) viewed as a sample space
- Outcomes in \(A \) have prob. \(\frac{1}{k} \), not \(\frac{1}{n} \)
- What is the probability of \(B \) in this reduced sample space?

Reduced Sample Spaces

- Each outcome in \(A \) has probability \(\frac{1}{k} \) (instead of \(\frac{1}{n} \))
- What is the probability of \(B \) in this reduced sample space?
 - The only elements in \(B \) that are in \(A \) are members of \(AB \) whose size is \(|AB| \)
 - “New” \(P(B) = \frac{|AB|}{k} = \frac{|AB|}{|A|} = \frac{P(AB)}{P(A)} = P(B|A) \)
 - I hate reduced sample spaces!

Relative frequencies?

- The definition of conditional probability is motivated by considerations arising from the relative frequency viewpoint
- Suppose that \(N \) independent trials of the experiment have been performed
- Let \(N_A \) denote the number of trials on which event \(A \) occurred
- Let \(N_B \) denote the number of trials on which event \(B \) occurred
Focus on trials where A occurred...

- Events A and B respectively occurred on N_A and N_B trials out of N
- Event AB occurred on N_{AB} trials
- $N_A \approx P(A)\cdot N$
- $N_B \approx P(B)\cdot N$, etc
- Consider only those N_A trials on which A occurred and ignore the rest
- On how many of these did B also occur?
- If B occurred, then AB must have occurred (since A occurred on all these N_A trials)

You forgot a few, didn’t you?

- Consider only those N_A trials on which A occurred and ignore the rest
- On how many of these did B also occur?
- If B occurred, then AB must have occurred (since A occurred on all these N_A trials)
- B occurred on N_{AB} trials out of the N_A trials on which A occurred
- The set of N_{AB} trials on which AB occurred must be a subset of the N_A trials on which A occurred

No, I didn’t!

- Consider only those N_A trials on which A occurred and ignore the rest
- B occurred on N_{AB} trials out of the N_A trials on which A occurred
- The relative frequency of B on those N_A trials on which A occurred is N_{AB}/N_A
- $N_{AB}/N_A = (N_{AB}/N)/(N_A/N) \approx P(AB)/P(A) = P(B|A)$
- Thus, conditional probability \approx relative frequency on a restricted set of trials

Does it work for random variables?

- Can conditional probabilities be defined for random variables?
- Yes, we can find the conditional probability of an event defined in terms of random variables
- What is $P(X = k \mid X > n)$?
- This is just $P(\{X = k\} \cap \{X > n\})/P(X > n)$
- The event $\{X = k\} \cap \{X > n\}$ is either \emptyset or $\{X = k\}$ depending on whether $k \leq n$ or not

An example with random variables

- Let X denote a geometric random variable with parameter p
- For $k > 0$, $P(X = k+r \mid X > r)$
 - $= P(\{X = k+r\} \cap \{X > r\})/P(X > r)$
 - $= P(X = k+r)/P(X > r)$
 - $= (1-p)^{k+r-1}p/(1-p)^r$
 - $= (1-p)^{k-1}p$
 - $= P(X = k)$

Memoryless property I

- Let X denote a geometric random variable with parameter p
- For $k > 0$, $P(X = k+r \mid X > r) = P(X = k)$
- Given that the event $\{X > r\}$ has occurred, that is, the first r trials ended in a “failure”, the probability that we need to wait for an additional k trials to observe the first success is the same as $P(X = k)$
- It’s as if the first r trials are forgotten!
Memoryless property II

- Geometric random variables are said to be memoryless in the sense that the waiting time for a success is unchanged by previous failures.
- The chances of having the first success occur on the tenth trial from now are the same as they were 313 trials ago when we began the experiment.
- The “system” has forgotten its past failures.

Another example with RVs

- Let X denote a binomial random variable with parameters (n, p).
- A binomial random variable counts the number of occurrences of an event A of probability p on n independent trials.
- Given that $X = k$, what is the conditional probability that the j-th trial resulted in a success? i.e., A occurred on the j-th trial?
- Let $B = \{X = k\}$ and $C = A$ on j-th trial.

More on binomial RVs

- Let $B = \{X = k\}$ and $C = A$ on j-th trial.
- $P(C|B) = P(BC)/P(B)$.
- $BC = \{k$ total successes on n trials and a success on j-th trial\} = $\{k–1$ total successes on $n–1$ trials and a success on j-th trial\}$
- $P(BC) = \binom{n-1}{k-1}p^{k-1}(1–p)^{(n–1)–(k–1)}\cdot p$

More on binomial RVs (continued)

- $P(C|B) = P(BC)/P(B)$.
- Dividing both sides by $P(A)$, we get that $P(B|A) + P(B^c|A) = 1$.
- That is, $P(B^c|A) = 1 – P(B|A)$.
- This is just like $P(B^c) = 1 – P(B)$ except that we are using conditional probabilities!

Partitions again

- AB and AB^c are a partition of A.
- $P(AB) + P(AB^c) = P(A)$.
- Dividing both sides by $P(A)$, we get that $P(B|A) + P(B^c|A) = 1$.
- That is, $P(B^c|A) = 1 – P(B|A)$.
- This is just like $P(B^c) = 1 – P(B)$ except that we are using conditional probabilities!

Just as good as regular probability

- Conditional probabilities are a probability measure, that is, they satisfy the axioms of probability theory.
- Caveat: Everything must be conditioned on the same event. No mixing and matching allowed.
- Thus, let A denote the fixed conditioning event and let all the probabilities under consideration be conditional probabilities.
The axioms are satisfied …

- A is the conditioning event
- Axiom I: \(0 \leq P(B|A) \leq 1\) for all events B
- Since \(AB \subset A\), \(0 \leq P(AB) \leq P(A)\) and hence \(0 \leq P(B|A) = P(AB)/P(A) \leq 1\)
- Axiom II: \(P(\Omega|A) = 1\)
- Since \(A\Omega = A\), \(P(A\Omega) = P(A)\) and hence \(P(\Omega|A) = P(A\Omega)/P(A) = 1\)
- Similarly for Axiom III

… and all the consequences hold

- \(P(\emptyset|A) = 0\)
- \(P(B^c|A) = 1 - P(B|A)\)
- If \(B \subset C\), then \(P(B|A) \leq P(C|A)\)
- If \(BC = \emptyset\), then \(P((B \cup C)|A) = P(B|A) + P(C|A)\)
- More generally, \(P((B \cup C)|A) = P(B|A) + P(C|A) - P(BC|A)\)

You say potato, I say potato...

- An expression such as \(P((B \cup C)|A)\) is commonly written as \(P(B \cup C|A)\)
- Everything to the right of the vertical bar is the conditioning event; it is a single set
- Everything to the left of the vertical bar is the conditioned event; it is a single set
- Beginners’ mistake: If B and C are disjoint, they write \(P(B \cup C|A) = P(B) + P(C|A)\)
- NOT!

Keeping things straight

- Condition EVERYTHING on one event A and you can apply all the rules and tricks of probability that you have learned
- \(P(B \cup C|A \cup D)\) is the conditional probability of the event \(B \cup C\) conditioned on the event \(A \cup D\)
- Exercises: What is \(P(B|A \cup B)\)? What is \(P(A \cup B|A)\)? What is \(P(A^c \cup B|A)\)? What is \(P(A^c \cup B\^c|A \cup B)\)?

Summary

- We studied the notion of conditional probability as a revised estimate of the chances that an event B occurred in light of partial knowledge of the outcome of the experiment, viz. knowing that A occurred
- Some simple examples were used to illustrate the concept
- We noted that conditional probabilities are a probability measure in that they satisfy the axioms of probability