Review I

- Y denotes the number of occurrences of an event A of probability p on n trials
- Y is a binomial random variable with parameters (n, p). It has mean $E[Y] = np$, variance $np(1-p)$, and mode $\lfloor (n+1)p \rfloor$
- Problem: Y had value k on a trial of the (compound) experiment. Estimate the unknown value of p from this datum
- The relative frequency estimate of p is k/n

Review II

- The relative frequency estimate can be justified via maximum-likelihood principle
- Maximum-likelihood (ML) principle: the estimate of the value of an unknown parameter is the number that maximizes the likelihood of the observation
- If an event A occurred k times on n trials, the ML estimate of $P(A)$ is k/n, which is the same as the relative frequency estimate

Review III

- The value of the unknown parameter p is assumed to be any number in $[0, 1]$
- It is only in fortuitous circumstances that a point estimate such as the ML estimate will be the exact value of p
- More often than not, a point estimate will be close, but not exactly right
- Attempting to get a more precise estimate only reduces the chances of accuracy

Review IV

- Point estimates (e.g., the ML estimate k/n) versus interval estimates such as $0.5013 < p < 0.5033$ or $k/n \pm 3\%$
- Associated with a confidence interval is its confidence level
- The narrower the confidence interval, the lower the confidence level

Confidence intervals and levels

- How does one find a confidence interval?
- If 5,023 Heads occurred on 10,000 tosses of a coin, and we want a confidence interval of length 0.1, where in the interval $[0,1]$ should our confidence interval be?
- How much probability mass lies “far away” from μ?
- How much probability mass is at distance $a\sigma$ or more from μ?

Back to probability ... for a while

- The variance of a random variable is a measure of the spread of the probability masses about the mean μ
- The larger the variance, the wider the dispersion of the masses away from μ
- How much probability mass lies “far away” from μ?
- How much probability mass is at distance $a\sigma$ or more from μ?
Re: being way out in left field ...

- How much probability mass is at distance \(\sigma a\) or more from \(\mu\)?
- \(P(X \geq \mu + \sigma a) + P(X \leq \mu - \sigma a)\)
- \(= P(X - \mu \geq \sigma a)\)
- Total masses in orange
- \(P(X - \mu \geq \sigma a) = \sum_{u:|u|>\sigma a} p(u) + \sum_{u:|u|<\sigma a} p(u)\)

So, what’s so hard about that?

- For any given pmf, \(P(X - \mu \geq \sigma a)\) can be calculated straightforwardly
- However, there is a more generic answer to the question “How much probability mass is at distance \(\sigma a\) or more from \(\mu\)?
- No matter what the pmf happens to be, \(P(X - \mu \geq \sigma a) \leq 1/a^2\)
- This is called the Chebyshev inequality

Proof of Chebyshev Inequality I

- Chebyshev inequality: For any random variable with mean \(\mu\) and variance \(\sigma^2\)
- \(P(X - \mu \geq \sigma a) \leq 1/a^2\)
- \(P(X - \mu \geq \sigma a) = \sum_{u:|u|>\sigma a} p(u) + \sum_{u:|u|<\sigma a} p(u)\)
- \((u - \mu)/\sigma a \geq 1\) and \((u - \mu)/\sigma a \leq -1\)
- We make each term on the right larger by
 - multiplying \(p(u)\) by \([u - \mu]/\sigma a\)^2 \(\geq 1\)
 - multiplying \(p(u)\) by \([u - \mu]/\sigma a\)^2 \(\geq 1\)

Proof of Chebyshev Inequality II

- \(P(X - \mu \geq \sigma a) \leq \sum_{u} [(u - \mu)/\sigma a]^2 p(u)\)
- Next, we add on the right side the positive term \([u - \mu]/\sigma a)^2 p(u)\) for each \(u\) that satisfies \(\mu - \sigma a < u < \mu - \sigma a\), thus further increasing the sum
- Sum is now over all values taken on by \(X\)

Proof of Chebyshev Inequality III

- \(P(X - \mu \geq \sigma a) \leq \sum_{u} [(u - \mu)/\sigma a]^2 p(u)\)
- But, by definition, the sum is just \(\sigma^2\)
- Hence, we have just shown that \(P(X - \mu \geq \sigma a) \leq 1/a^2\)
- which is the Chebyshev inequality
Some obvious numerology

- \(P\left(|X - \mu| \geq a \sigma \right) \leq \frac{1}{a^2} \)
- Note that we must choose \(a > 1 \) for this inequality to be of any use
- No more than 25% of the probability mass is at distance \(2 \sigma \) or more from \(\mu \)
- No more than 4% of the probability mass is at distance \(5 \sigma \) or more from \(\mu \)
- No more than 1% of the probability mass is at distance \(10 \sigma \) or more from \(\mu \)

The Chebyshev Inequality is weak

- Consider a binomial random variable \(X \) with parameters \((10, 0.5)\)
 - \(\mu = 5, \sigma^2 = 2.5, \sigma = 1.58... \)
 - Chebyshev Inequality gives \(P\left(|X - 5| \geq 3.16 \right) \leq 0.25 \)
 - Actually, \(P\left(|X - 5| \geq 3.16 \right) = P(X = 1) + P(X = 9) + P(X = 10) = 22/1024 = 0.0215... \ll 0.25 \)

What’s a lousy inequality good for?

- The importance of the Chebyshev inequality lies in its generality — it can be applied in a wide variety of cases
- The Chebyshev inequality allows us to state general results that apply to all random variables
- Example: For any random variable, at least 96% of the probability mass lies in the interval \((\mu - 5\sigma, \mu + 5\sigma)\)

Applying the Chebyshev inequality

- Let \(X \) denote a binomial random variable with parameters \((n, p)\)
- On a trial of the (compound) experiment, we observe that \(X \) had value \(k \), \(0 \leq k \leq n \)
- The probability is at least 96% that the observed value \(k \) is in the interval \((np - 5[\sqrt{np(1-p)}], np + 5[\sqrt{np(1-p)}])\)

Changing the assumptions a bit ...

- \(X \) is a binomial \((n, p)\) random variable
- \(p \) is an unknown parameter
- On a trial, the event \{\(X = k \}\) occurred
- The probability is at least 96% that the observed value \(k \) is in the interval \((np - 5[\sqrt{n/4}], np + 5[\sqrt{n/4}])\)
- We don’t know what \(p \) is, but we do know (we do?) that \(np(1-p) \leq n/4 \)

Bigger interval includes smaller ...

- \(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \)
- Event \{\(X = k \)\} occurred
- The interval \((np - 5[\sqrt{np(1-p)}], np + 5[\sqrt{np(1-p)}])\) is a subset of the interval \((np - 5[\sqrt{n/4}], np + 5[\sqrt{n/4}])\)
- i.e. \((np - 2.5\sqrt{n}, np + 2.5\sqrt{n})\)
\[P(\{X \in \text{bigger}\}) \geq P(\{X \in \text{smaller}\}) \]

\(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \)

On a trial, the event \(\{X = k\} \) occurred

The probability is at least 96% that the observed value \(k \) is in the interval

\[(np - 5\sqrt{np(1-p)}, np + 5\sqrt{np(1-p)}) \]

The probability is at least 96% that the observed value \(k \) is in the interval

\[(np - 2.5\sqrt{n}, np + 2.5\sqrt{n}) \]

Estimate of \(p \) is in interval ...

\(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \)

\(\{X = k\} \) occurred

Maximum likelihood estimate of \(p \) is \(k/n \)

The probability is at least 96% that the observed value \(k \) is in the interval

\[(np - 2.5\sqrt{n}, np + 2.5\sqrt{n}) \]

The probability is at least 96% that the ML estimate of \(p \) is in the interval

\[(p - 2.5/\sqrt{n}, p + 2.5/\sqrt{n}) \]

A really stupid statement?

\(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \)

\(\{X = k\} \) occurred

The probability is at least 96% that \(k/n \), the ML estimate of \(p \), is in the interval

\[(p - 2.5/\sqrt{n}, p + 2.5/\sqrt{n}) \]

The length of the interval is \(5/\sqrt{n} \), but the mid-point is the unknown quantity \(p \)

What good does this do us?

We can try and fudge the data!

Where's Waldo? Where's \(p \)?

\(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \)

\(\{X = k\} \) occurred

Maximum likelihood estimate of \(p \) is \(k/n \)

With at least 96% probability, \(k/n \) is in the interval \((p - 2.5/\sqrt{n}, p + 2.5/\sqrt{n})\) whose midpoint \(p \) is unknown

But if this event (viz. \(X \) is in the interval \((np - 2.5\sqrt{n}, np + 2.5\sqrt{n})\)) of probability at least 0.96 occurred, then the ML estimate \(k/n \) of \(p \) is within \(\pm 2.5/\sqrt{n} \) of \(p \)

But this means that with “probability at least 0.96”, \(p \) is in the interval \(k/n \pm 2.5/\sqrt{n} \)!

Arguing bass ackwards...

With at least 96% probability, \(k/n \) is in the interval \((p - 2.5/\sqrt{n}, p + 2.5/\sqrt{n})\) whose midpoint \(p \) is unknown

But if this event (viz. \(X \) is in the interval \((np - 2.5\sqrt{n}, np + 2.5\sqrt{n})\)) of probability at least 0.96 occurred, then the ML estimate \(k/n \) of \(p \) is within \(\pm 2.5/\sqrt{n} \) of \(p \)

But this means that with “probability at least 0.96”, \(p \) is in the interval \(k/n \pm 2.5/\sqrt{n} \)!

The confidence trick

But this means that with “probability at least 0.96”, \(p \) is in the interval \(k/n \pm 2.5/\sqrt{n} \)!

Why is the phrase “probability at least 0.96” in quotation marks?

Because there is no probability involved here in the “usual” sense of the word!

But didn’t it all sound perfectly reasonable when it was just explained?

What’s all this no probability business?
How to fool all the people all the time...

- \(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \). \(\{X = k\} \) occurred
- Consider the interval
 \[(k/n - 2.5/\sqrt{n}, k/n + 2.5/\sqrt{n})\]
- Either the parameter \(p \) is in this interval, or it is not
- We don’t know which of these two states of affairs holds for our data, but clearly, probability has nothing to do with it

Nomenclature

- Statisticians call the interval
 \[(k/n - 2.5/\sqrt{n}, k/n + 2.5/\sqrt{n})\]
 or \(k/n \pm 2.5/\sqrt{n} \) a confidence interval
- They call the “0.96 probability” as a confidence level rather than a probability because it measures the degree of belief that the unknown parameter \(p \) is, in fact, in this confidence interval
- I am 96% confident that \(p \) is in the interval

Philosophical dilemmas

- Whether probability is a measure of the degree of belief is a matter that has been argued over by philosophers of probability
- Some believe that all probabilities are subjective, and are just a quantification of the degree of belief
- “I think the probability is 95% that the Earl of Oxford wrote Shakespeare’s plays”
- Is this a probability statement?

Back to basics — the original B2B

- \(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \). \(\{X = k\} \) occurred
- The interval
 \[(k/n - 2.5/\sqrt{n}, k/n + 2.5/\sqrt{n})\]
 is called a confidence interval for \(p \)
- The confidence level associated with this interval is 96%
- We are 96% confident that \(p \) does lie in this confidence interval

More generally ...

- \(X \) is a binomial \((n, p)\) random variable with unknown parameter \(p \). \(\{X = k\} \) occurred
- The interval
 \[(k/n - a/2/\sqrt{n}, k/n + a/2/\sqrt{n})\]
 is a confidence interval for \(p \) and the associated confidence level is \(1 - 1/a^2 \)
- If we increase \(a \), the length of the confidence interval increases, but so does the confidence level

Trade-offs I

- \((k/n - a/2/\sqrt{n}, k/n + a/2/\sqrt{n}) \) is a confidence interval for the probability \(p \) at confidence level \(1 - 1/a^2 \)
- If a confidence interval of length \(L \) is desired, the corresponding confidence level is \(C = 1 - 1/L^2 \)
- If a confidence level \(C \) is desired, the length of the confidence interval is
 \[L = 1/[n(1 - C)]^{1/2} \]
Trade-offs II

- \((k/n - a/2\sqrt{n}, k/n + a/2\sqrt{n})\) is a confidence interval for \(p\) at confidence level \(1 - 1/a^2\)
- The wider the confidence interval, the higher the confidence level
- The narrower the confidence interval, the lower the confidence level
- How can we get a narrow confidence interval with a high confidence level?
 - Increase \(n\)

Trade-offs III

- We can get a very narrow confidence interval with a high confidence level by increasing \(n\), the number of trials of the subexperiment
- In practical situations, costs of the repeated trials must be taken into account and balanced against the costs of obtaining a wrong estimate of \(p\)

Trade-offs IV

- Consider estimating the percentage of defective widgets in a production run
- Price of widget takes into account the expected number of defectives, warranties return and replacement policies, etc
- Testing is expensive
- But underestimating \(p\) can also have serious economic (and job security!) consequences

How good is all this stuff?

- We began with a weak probability bound
- We used the maximum possible value of variance and did not adjust for \(p \neq 0.5\)
- By using other results, it is possible to improve matters
- For a given confidence level, the interval can be made narrower than described in this lecture
- But the interval is still of length \(O(\sqrt{n})\)

How much variation to expect?

- A fair coin is tossed 10,000 times. Heads should come up roughly 5,000 times
 - Mean = 5,000; variance = 2500; \(\sigma = 50\)
 - The Chebyshev inequality says that 99% of the time we should expect to see between 4,500 and 5,500 Heads (\(\pm 10\sigma\))
 - The normal approximation says that more than 99% of the time, we will see between 4850 and 5150 Heads (\(\pm 3\sigma\))

Is this a biased coin?

- A coin is tossed 10,000 times
 - If the coin is fair, then with probability more than 99%, between 4850 and 5150 Heads will be observed
 - If the number of Heads observed is not in this range, the coin probably is biased
 - But this does not prove the coin is biased; it might be fair, and we were just unlucky enough to get a <1% probability event
Biased beyond a reasonable doubt

- A coin is tossed 10,000 times
- If the number of Heads observed is not in the range 4850-5150, the coin is most likely biased
- It is reasonable to decide that the coin is biased
- It is possible that this decision is wrong!
- In fact, it is wrong with probability less than 1%. Others may demand less than 0.1%?

How say you? Guilty or Not Guilty?

- A coin is tossed 10,000 times
- The number of Heads observed is in the range 4850-5150
- Is it reasonable to assert that the coin is indeed a fair coin?
- No, it might have $P(\text{Heads}) = 0.5000001$
- It is only reasonable to say that there is not sufficient evidence to call it biased
- The verdict is Not Guilty; never Innocent

Decisions, decisions, decisions...

- A coin is tossed 10,000 times
- If the number of Heads observed is not in the range 4850-5150, it is reasonable to assume that the coin is a biased coin
- If the number of Heads observed is in the range 4850-5150, there is not sufficient reason to declare the coin to be biased
- We do not ever say “Yes, the coin is fair”

Summary

- We stated and proved the Chebyshev inequality
- We studied the concepts of confidence interval and confidence level
- We used the Chebyshev inequality to relate the width of the interval and the confidence level
- We discussed the concept of trial by jury in Anglo-Saxon jurisprudence