1. (a) $\mathrm{E}[\mathbf{Y}]=\mathrm{E}\left[\mathbf{X}^{2}\right]=\int_{-1}^{+1} \mathrm{u}^{2}(1 / 2) \mathrm{du}=1 / 3 . \mathrm{E}\left[\mathbf{Y}^{2}\right]=\mathrm{E}\left[\mathbf{X}^{4}\right]=\int_{-1}^{+1} \mathrm{u}^{4}(1 / 2) \mathrm{du}=1 / 5$.

Hence, $\operatorname{var}(\mathbf{Y})=E\left[\mathbf{Y}^{2}\right]-(E[\mathbf{Y}])^{2}=(1 / 5)-(1 / 3)^{2}=4 / 45$.
(b) $\quad \mathrm{E}[\mathbf{Z}]=\int_{-\infty} g(u) f(u) d u=\int_{-1}-u^{2}(1 / 2) d u+\int_{0} u^{2}(1 / 2) d u=-1 / 3+1 / 3=0$.
2.(a) Obviously $\mathrm{P}\{\mathbf{Y}=\alpha\}=\mathrm{P}\{\mathbf{Y}=-\alpha\}=1 / 2$.
(b) $\quad(1.29-1)=0.29 .(1.29-1)^{2}=0.0841 .(\pi / 4-1)=-0.214 \ldots,(\pi / 4-1)^{2}=0.046 \ldots$.
$(-\pi / 4-(-1))=-0.214 \ldots,(-\pi / 4-(-1))^{2}=0.046 \ldots$. Note that the error for $+\mathbf{X}$ is the same as that for $-\mathbf{X}$.
(c) $\quad \mathrm{E}[\mathbf{Z}]=\int_{0}^{\infty}(\mathrm{u}-\alpha)^{2} f(\mathrm{u}) \mathrm{du}+\int_{-\infty}^{0}(\mathrm{u}+\alpha)^{2} f(\mathrm{u}) \mathrm{du}=\int_{-\infty}^{\infty}\left(\mathrm{u}^{2}+\alpha^{2}\right) f(\mathrm{u}) \mathrm{du}-4 \alpha \int_{0}^{\infty} \mathrm{u} f(\mathrm{u}) \mathrm{du}=1+\alpha^{2}-4 \alpha / \sqrt{2 \pi}$ on expanding out the quadratics, changing variables, and using the fact that $E\left[X^{2}\right]=\sigma^{2}+\mu^{2}=1$. Note that $u f(u)$ is a perfect integral. It is easy to show that $E[\mathbf{Z}]$ has minimum value $1-2 / \pi$ at $\alpha=\sqrt{2 / \pi}$
(d) From tables of $\Phi(\bullet)$, we get $\mathrm{P}\{\mathbf{W}=-3\}=\mathrm{P}\{\mathbf{W}=+3\}=\Phi(-2.5)=0.0062$,
$\mathrm{P}\{\mathbf{W}=0\}=\Phi(0.5)-\Phi(-0.5)=0.3830, \mathrm{P}\{\mathbf{W}=-1\}=\mathrm{P}\{\mathbf{W}=+1\}=\Phi(1.5)-\Phi(0.5)=0.2417$, and
$\mathrm{P}\{\mathbf{W}=-2\}=\mathrm{P}\{\mathbf{W}=+2\}=\Phi(2.5)-\Phi(1.5)=0.0606$.
(e) $\quad \mathrm{P}\left\{\mathbf{Z}_{2}=1\right\}=\mathrm{P}\{\mathbf{W}<0\}=0.3085$.
$\mathrm{P}\left\{\mathbf{Z}_{1}=1\right\}=\mathrm{P}\{\mathbf{W}=2\}+\mathrm{P}\{\mathbf{W}=3\}+\mathrm{P}\{\mathbf{W}=-1\}+\mathrm{P}\{\mathbf{W}=-2\}=0.3691$
$\mathrm{P}\left\{\mathbf{Z}_{0}=1\right\}=\mathrm{P}\{\mathbf{W}=2\}+\mathrm{P}\{\mathbf{W}=0\}+\mathrm{P}\{\mathbf{W}=-2\}=0.5042 \neq \mathrm{P}\left\{\mathbf{Z}_{0}=0\right\}$
3.(a) From the figure shown below, we see that the pdf is symmetric about $u=0$. Hence, we get that

$$
\mathrm{P}\{\mathbf{X} \leq \ln 2\}=\frac{1}{2}+\int_{0}^{\ln 2} \frac{1}{2} \exp (-\mathrm{u}) \mathrm{du}=\frac{1}{2}+\left[-\left.\frac{1}{2} \exp (-\mathrm{u})\right|_{0} ^{\ln 2}=\frac{3}{4} . \text { Notice that } \mathrm{P}\{0 \leq \mathbf{X} \leq \ln 2\}=\frac{1}{4}\right.
$$

(b) $\mathrm{P}\{|\mathbf{X}| \leq \ln 2 \mid \mathbf{X} \leq \ln 2\}=\frac{\mathrm{P}\{|\mathbf{X}| \leq \ln 2\} \cap\{\mathbf{X} \leq \ln 2\}\}}{\mathrm{P}\{\mathbf{X} \leq \ln 2\}}=\frac{\mathrm{P}\{|\mathbf{X}| \leq \ln 2\}}{\mathrm{P}\{\mathbf{X} \leq \ln 2\}}=\frac{2 \mathrm{P}\{0 \leq \mathbf{X} \leq \ln 2\}}{3 / 4}=\frac{1 / 2}{3 / 4}=\frac{2}{3}$.

(c) The minimum value of \mathbf{I} is $-1 . \mathrm{F}_{\mathbf{I}}(\mathrm{b})=\mathrm{P}\{\mathbf{I} \leq \mathrm{b}\}=0$ if $\mathrm{b}<-1$.

For $\mathrm{b} \geq-1, \mathrm{~F}_{\mathbf{I}}(\mathrm{b})=\mathrm{P}\{\mathbf{I} \leq \mathrm{b}\}=\mathrm{P}\left\{\mathrm{e}^{\mathbf{V}}-1 \leq \mathrm{b}\right\}=\mathrm{P}\{\mathbf{V} \leq \ln (\mathrm{b}+1)\}=\mathrm{F}_{\mathbf{V}}(\ln (\mathrm{b}+1))$. But,
$F_{\mathbf{V}^{\prime}}(a)=\left\{\begin{array}{ll}e^{a} / 2, & a \leq 0, \\ 1-e^{-a} / 2, & a>0 .\end{array} \quad\right.$ Thus, $F_{\mathbf{I}}(b)=\left\{\begin{array}{l}\frac{b+1}{2}-1 \leq b \leq 0, \\ 1-\frac{1}{2(b+1)}, \quad b>0,\end{array}\right.$
and $f_{\mathbf{I}}(b)=\left\{\begin{array}{ll}\frac{1}{2} & -1 \leq b \leq 0, \\ \frac{1}{2(b+1)^{2}}, & b>0 .\end{array} \quad\right.$ Note that the pdf has constant value $1 / 2$ in the range $-1 \leq b \leq 0$.
4. Since \mathbf{X} is discrete, so is \mathbf{Y}. Since \mathbf{X} takes on integer values, we have that
$\mathbf{Y}=\sin (\pi \mathbf{X} / 2)=\left\{\begin{array}{lll}0, & \text { if } \mathbf{X} \text { is even }, & \\ +1, & \text { if } \mathbf{X}=4 \mathrm{k}+1, & k=0,1, \ldots \\ -1, & \text { if } \mathbf{X}=4 \mathrm{k}+3, & k=0,1, \ldots\end{array}\right.$
and hence,

$$
\begin{aligned}
& \mathrm{p}_{\mathbf{Y}}(0)=\mathrm{P}\{\mathbf{X} \text { is even }\}=\sum_{\mathrm{k}=1}^{\infty} \mathrm{P}\{\mathbf{X}=2 \mathrm{k}\}=\sum_{\mathrm{k}=1}^{\infty}(1 / 2)^{2 \mathrm{k}}=(1 / 4) \sum_{\mathrm{k}=0}^{\infty}(1 / 4)^{\mathrm{k}}=1 / 3 \\
& \mathrm{p}_{\mathbf{Y}}(1)=\sum_{\mathrm{k}=0}^{\infty} \mathrm{P}\{\mathbf{X}=4 \mathrm{k}+1\}=\sum_{\mathrm{k}=0}^{\infty}(1 / 2)^{4 \mathrm{k}+1}=(1 / 2) \sum_{\mathrm{k}=0}^{\infty}(1 / 16)^{\mathrm{k}}=8 / 15 \\
& \mathrm{p}_{\mathbf{Y}}(-1)=\sum_{\mathrm{k}=0}^{\infty} \mathrm{P}\{\mathbf{X}=4 \mathrm{k}+3\}=\sum_{\mathrm{k}=0}^{\infty}(1 / 2)^{4 \mathrm{k}+3}=(1 / 8) \sum_{\mathrm{k}=0}^{\infty}(1 / 16)^{\mathrm{k}}=2 / 15
\end{aligned}
$$

5.(a) Since \mathbf{X} takes on values between 0 and 1 , so does \mathbf{Y} and thus $\alpha=0$ and $\beta=1$.

Obviously, $\mathrm{P}\{\mathbf{Y} \leq \alpha-1\}=\mathrm{P}\{\mathbf{Y} \leq-1\}=0$ and $\mathrm{P}\{\mathbf{Y}>2 \beta\}=\mathrm{P}\{\mathbf{Y}>2\}=0$.
(b) Let $0 \leq \mathrm{v} \leq 1$. Then, $\mathrm{F}_{\mathbf{Y}}(\mathrm{v})=\mathrm{P}\{\mathbf{Y} \leq \mathrm{v}\}=\mathrm{P}\left\{(1-\mathbf{X})^{2} \leq \mathrm{v}\right\}=\mathrm{P}\{-\sqrt{\mathrm{v}} \leq 1-\mathbf{X} \leq \sqrt{\mathrm{v}}\}=\mathrm{P}\{\mathbf{X} \geq 1-\sqrt{\mathrm{v}}\}$
$=1-\mathrm{F}_{\mathbf{X}}(1-\sqrt{\mathrm{v}})=(1-(1-\sqrt{\mathrm{v}}))^{2}=\mathrm{v}$ where we used the result that $\mathrm{F}_{\mathbf{X}}(\mathrm{u})=1-(1-\mathrm{u})^{2}$.
Hence, $F_{\mathbf{Y}}(v)= \begin{cases}0, & u<0, \\ v, & 0 \leq v \leq 1, \\ 1, & v>1 .\end{cases}$
(c) A sketch of the function $\mathrm{F}_{\mathbf{Y}}(\mathrm{v})$ reveals that it is a nondecreasing continuous function. It is not differentiable at $\alpha=0$ or at $\beta=1$.
(d) Yes, we get the same values for $\mathrm{P}\{\mathbf{Y} \leq \alpha-1\}$ and $\mathrm{P}\{\mathbf{Y}>2 \beta\}$ as in part (a).
6.(a) The volume V has values in the range $(0,4 \pi / 3)$. For any $u, 0<u<4 \pi / 3, F_{V}(u)=P\{V \leq u\}$
$=P\left\{4 \pi \mathbf{R}^{3} / 3 \leq u\right\}=P\{\mathbf{R} \leq \sqrt[3]{3 u / 4 \pi}\}=F_{\mathbf{R}}(\sqrt[3]{3 u / 4 \pi})=3 u / 4 \pi$ since $F_{\mathbf{R}}(\rho)=\rho^{3}$ for $0<\rho<1$. Hence, $\mathrm{f}_{\mathbf{V}}(\mathrm{u})$ is uniform on $(0,4 \pi / 3)$.
(b) The electrical charge is uniformly distributed on the surface of the sphere. The surface charge density is $\mathbf{S}=\mathrm{Q} / 4 \pi \mathbf{R}^{2}>\mathrm{Q} / 4 \pi$.
For $\mathrm{x}>\mathrm{Q} / 4 \pi, \mathrm{~F}_{\mathbf{S}}(\mathrm{x})=\mathrm{P}\{\mathbf{S} \leq \mathrm{x}\}=\mathrm{P}\left\{\mathrm{Q} / 4 \pi \mathbf{R}^{2} \leq \mathrm{x}\right\}=\mathrm{P}\{1>\mathbf{R} \geq \sqrt{\mathrm{Q} / 4 \pi \mathrm{x}}\}=1-(\mathrm{Q} / 4 \pi \mathrm{x})^{1.5}$.
Hence, $\mathrm{f}_{\mathbf{S}}(\mathrm{x})=(3 / 2 \mathrm{x})(\mathrm{Q} / 4 \pi \mathrm{x})^{1.5}$ for $\mathrm{x}>\mathrm{Q} / 4 \pi$, and 0 otherwise.
7. (a) $E[\mathbf{X}]=\int_{0}^{\infty} u f(u) d u=\int_{0}^{\infty} u(b u) \cdot \exp \left(-b u^{2} / 2\right) d u=\sqrt{2 / b} \int_{0}^{\infty} \sqrt{v} \cdot \exp (-v) d v$ on setting $b u^{2} / 2=v$. The integral is $\Gamma(3 / 2)=(1 / 2) \Gamma(1 / 2)=\sqrt{\pi / 4}$ and hence $E[\mathbf{X}]=\sqrt{2 / b} \sqrt{\pi / 4}=\sqrt{\pi / 2} \sqrt{1 / b}$.
(b) $\mathrm{E}[\mathbf{X}]=\int_{0} \mathrm{P}\{\mathbf{X}>\mathrm{t}\} \mathrm{dt}=\int_{0} \exp \left(-\mathrm{bt}^{2} / 2\right) \mathrm{dt}$. But, we know (we do? how on earth did I ever get that idea?) that $\int_{0}^{\infty}(\sqrt{\mathrm{b} / 2 \pi}) \cdot \exp \left(-\mathrm{bt}^{2} / 2\right) \mathrm{dt}=1 / 2$ and hence $\mathrm{E}[\mathbf{X}]=\sqrt{\pi / 2} \sqrt{1 / \mathrm{b}}$ just as in part (a).
(c) The median lifetime is T satisfying $\mathrm{P}\{\mathbf{X}>\mathrm{T}\}=\exp \left(-\mathrm{bT}^{2} / 2\right)=1 / 2$. This gives $\mathrm{T}=\sqrt{2 \ln 2} \sqrt{1 / \mathrm{b}}$.

Since $2 \ln 2<\pi / 2$, the median is smaller than the mean. The mode of the pdf is easily found to be at $\sqrt{1 / \mathrm{b}}$ and is the smallest of the three central measures.
(d) $\quad \frac{\mathrm{d}}{\mathrm{db}}(\mathrm{bt}) \exp \left(-\mathrm{bt}^{2} / 2\right)=\mathrm{t} \cdot \exp \left(-\mathrm{bt}^{2} / 2\right)-\mathrm{bt} \bullet \exp \left(-\mathrm{bt}^{2} / 2\right) \bullet \mathrm{t}^{2} / 2$ is zero for $\mathrm{b}=\sqrt{2} / \mathrm{t}$. Thus, if we observe that $\mathbf{X}=\mathrm{t}$, the maximum-likelihood estimate of b is $\sqrt{2} / t$. Reality check: If t is large, we estimate the value of b to be quite small. This makes sense. If the system lasted for a long time, its hazard rate can be expected to be small, and the hazard rate is proportional to b.

