ECE 307
 Homework 7 Solutions

George Gross

Department of Electrical and Computer Engineering
 University of Illinois at Urbana-Champaign

10.12: PROBLEM FORMULATION

This is a multi-period planning problem with a 7 month horizon

Define the following for a backward recursion
O stage: a month of the planning period
O state variable: the number of crankcases S_{n}
left over from the stage ($n-1$), $n=1,2, \ldots, 7$
with $S_{7}=0$ and S_{0} unspecified
© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: PROBLEM FORMULATION

O decision variables: purchase amount $\boldsymbol{d}_{\boldsymbol{n}}$ for
stage $n, n=1,2, \ldots, 7$
O transition function: the relationship between
the amount in inventory, purchase decision and demand in stages n and $(n-1)$

$$
S_{n-1}=S_{n}+d_{n}-D_{n} \quad n=1,2, \ldots, 7
$$

where,
$D_{n}=$ demand at stage $n, n=1,2, \ldots, 7$
© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: PROBLEM FORMULATION

O return function: costs of purchase in stage n
plus the inventory holding costs given by the

mathematical expression

$$
\begin{aligned}
& f_{n}^{*}\left(S_{n}\right)=C_{n}+\left(S_{n}+d_{n}-D_{n}\right) 0.50+f_{n-1}^{*}\left(S_{n-1}\right) \\
& \text { costs of lot } \\
& \text { size ordered } \\
& \text { and }
\end{aligned}
$$

$$
f_{0}^{*}\left(S_{0}\right)=0
$$

10.12: STAGE 1 SOLUTION

$$
\begin{aligned}
D_{1} & =600 \\
f_{1}^{*}\left(S_{1}\right) & =\min _{d_{1}}\left\{C_{1}+\left(S_{1}+d_{1}-D_{1}\right) 0.50\right\}
\end{aligned}
$$

S_{1}	value of f_{1} for d_{1}					${ }^{*}{ }^{*}\left(S_{1}\right)$
	0	500	1,000	1,500	${ }_{1}^{*}$	
0			5,200	7,950	5,200	1,000
100		3,000	5,250	8,000	3,000	500
200		3,050	5,300	8,050	3,050	500
300		3,100	5,350	8,100	3,100	500
400		3,150	5,400	8,150	3,150	500
500		3,200	5,450	8,200	3,200	500
600	0	3,250	5,500	8,250	0	0

© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: STAGE 2 SOLUTION

$$
D_{2}=1,200
$$

$$
f_{2}^{*}\left(S_{2}\right)=\min _{d_{2}}\left\{C_{2}+\left(S_{2}+d_{2}-D_{2}\right) 0.50+f_{1}^{*}\left(S_{2}+d_{2}-D_{2}\right)\right\}
$$

S_{2}	value of f_{2} for d_{2}				${ }^{*}\left(S_{2}\right)$	\boldsymbol{d}_{2}^{*}
	0	500	1,000	1,500		
0				10,750	10,750	1,50
100				10,850	10,850	1,500
200			10,200	10,950	10,200	1,000
300			8,050	7,800	7,800	1,500
400			8,150		8,150	1,000
500			8,250		8,250	1,000
600			8,350		8,350	1,000

10.12: STAGE 3 SOLUTION

$D_{3}=900$

$\boldsymbol{f}_{3}^{*}\left(S_{3}\right)=\min _{d_{3}}\left\{C_{3}+\left(S_{3}+d_{3}-D_{3}\right) 0.50+\boldsymbol{f}_{2}^{*}\left(S_{3}+\boldsymbol{d}_{3}-D_{3}\right)\right\}$

S_{3}	value of f_{3} for d_{3}				${ }^{*}\left(S_{3}\right)$	d_{3}^{*}
	0	500	1,000	1,500		
0			15,900	16150	15,900	1,000
100			15,300		15,300	1,000
200			12,950		12,950	1,000
300			13,350		13,350	1,000
400		13,750	13,500		13,500	1,000
500		13,900	13,650		13,650	1,000
600		13,300			13,300	500

10.12: STAGE 4 SOLUTION

$D_{4}=400$

$$
f_{4}^{*}\left(S_{4}\right)=\min _{d_{4}}\left\{C_{4}+\left(S_{4}+d_{4}-D_{4}\right) 0.50+f_{3}^{*}\left(S_{4}+d_{4}-D_{4}\right)\right\}
$$

S_{4}	value of f_{4} for d_{4}				${ }^{*}{ }_{4}^{*}\left(s_{4}\right)$	d_{4}^{*}
	0	500	1,000	1,500		
0		18,350	18,600		16,050	500
100		16,050			16,500	500
200		16,500			16,700	500
300		16,700			15,900	0
400	15,900	16,900			15,350	0
500	15,350	16,600			13,050	0
600	13,050					

10.12: STAGE 5 SOLUTION

$D_{5}=\mathbf{8 0 0}$

$\boldsymbol{f}_{5}^{*}\left(\boldsymbol{S}_{5}\right)=\min _{d_{5}}\left\{\boldsymbol{C}_{5}+\left(\boldsymbol{S}_{5}+\boldsymbol{d}_{5}-D_{5}\right) \mathbf{0 . 5 0}+\boldsymbol{f}_{4}^{*}\left(\boldsymbol{S}_{5}+\boldsymbol{d}_{5}-D_{5}\right)\right\}$

S_{5}	value of f_{5} for d_{5}				$\boldsymbol{f}_{5}^{*}\left(S_{5}\right)$	d_{5}^{*}
	0	500	1,000	1,500		
0			21,600		21,600	1,000
100			21,850		21,850	1000
200			21,100		21,100	1,000
300		21,350	20,600		20,600	1,000
400		19,100	18,350		18,350	1,000
500		19,600			19,600	500
600		19,850			19,850	500

© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.12: STAGE 6 SOLUTION

$D_{6}=1,100$
$f_{6}^{*}\left(S_{6}\right)=\min _{d_{6}}\left\{C_{6}+\left(S_{6}+d_{6}-D_{6}\right) 0.50+f_{5}^{*}\left(S_{6}+d_{6}-D_{6}\right)\right\}$

S_{6}	value of f_{6} for d_{6}					${ }^{*}\left(S_{6}\right)$
	0	500	1,000	1,500	d_{6}^{*}	
0				26,050	26,050	1,500
100			26,600	27,350	26,600	1,000
200			26,900	27,650	26,900	1,000
300			25,200		26,200	1,000
400			24,600	24,850		25,750
500					2,000	
600						24,650

10.12: STAGE 7 SOLUTION

For stage $7, D_{7}=700$ and

$\boldsymbol{f}_{7}^{*}\left(\boldsymbol{S}_{7}\right)=\min _{d_{7}}\left\{\boldsymbol{C}_{7}+\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-\boldsymbol{D}_{7}\right) \mathbf{0 . 5 0}+\boldsymbol{f}_{6}^{*}\left(\boldsymbol{S}_{7}+\boldsymbol{d}_{7}-\boldsymbol{D}_{7}\right)\right\}$
Optimal total cost over 7 months $=\$ \mathbf{3 1 , 3 5 0}$
obtained with the purchasing policy given below

month	1	2	3	4	5	6	7
amount of material	1,000	1,000	1,000	0	1,000	1,500	500

© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SOLUTION CHARACTERISTICS

\square The initial state variable was specified $\left(S_{1}=0\right)$ and the final output state S_{8} was a "choice" variable; thus, this is an initial value DP problem
\square The state variables and decision variables are decomposed into discrete, mutually exclusive sets at each stage of the $D P$ solution
\square Since each input state variable gives rise to only a single output state variable, this problem is known as a serial DP problem

10.14 (a): PROBLEM FORMULATION

The problem is a transportation problem which is a special case $L P$

$$
\min Z=\min \sum_{i=1}^{4} \sum_{j=1}^{6} c_{i j} x_{i j}
$$

s.t.

$$
\begin{aligned}
\sum_{j=1}^{6} x_{i j} & =1 \\
\sum_{i=1}^{4} x_{i j} & \leq 1 \\
x_{i j} & \in\{0,1\}
\end{aligned}
$$

10.14 (b): DP SOLUTION

\square Define the following:

O stage: car numbered $n=1,2,3,4$

O state variable \underline{s}_{n} : vector whose dimension is
the number of unassigned markets with each
component given by the number of the
unassigned market

10.14 (b): DP SOLUTION

O decision variable: unassigned market d_{n}, a
component of \underline{s}_{n}, with $1 \leq d_{n} \leq 6, n=1, \ldots, 4$
O stage \boldsymbol{n} costs: costs $\boldsymbol{r}_{\boldsymbol{n}}\left(\boldsymbol{d}_{\boldsymbol{n}}\right)$ of the assignment of the car \boldsymbol{n} to the market $\boldsymbol{d}_{\boldsymbol{n}}$

O return function: total costs at stage \boldsymbol{n}

$$
\boldsymbol{f}_{n}^{*}\left(\underline{s}_{n}\right)=\min _{d_{n}}\left\{\boldsymbol{r}_{n}\left(d_{n}\right)+\boldsymbol{f}_{n-1}^{*}\left(\underline{s}_{n-1}\right)\right\}
$$

with

10.14 (b): DP SOLUTION

d_{n} is a component of \underline{s}_{n}
\underline{s}_{n-1} is the reduced vector obtained from \underline{s}_{n}
via the removal of $\boldsymbol{d}_{\boldsymbol{n}}$
O objective:
$\min Z=\sum_{n=1}^{4} r_{n}\left(d_{n}\right), d_{n}$ is a component of $\underline{s}_{n}, n=1,4$
O transition relationship: \underline{s}_{n-1} is the reduced vector obtained from \underline{s}_{n} by the removal of the component d_{n}

10.14 (b): STAGE 1 SOLUTION

\square In stage 1, we allocate car 1, having already
allocated 3 markets to the other 3 cars
\square Consequently, there are

$$
\frac{6!}{3!3!}=20
$$

possible states \underline{s}_{1} for which to make a decision

10.14 (b): STAGE 1 SOLUTION

state number	\underline{S}_{1}	value of f_{1} for decision d_{1}						d_{1}^{*}	f_{1}^{*}
		1	2	3	4	5	6		
1	[1,2,3]	7	12	9				1	7
2	[1,2,4]	7	12		15			1	7
3	[1,2,5]	7	12			8		1	7
4	[1,2,6]	7	12				14	1	7
5	[1,3,4]	7		9	15			1	7
6	[1,3,5]	7		9		8		1	7
7	[1,3,6]	7		9			14	1	7
8	[1,4,5]	7			15	8		1	7
9	[1,4,6]	7			15		14	1	7
10	[1,5,6]	7				8	14	1	7
11	[2,3,4]		12	9	15			3	9
12	[2,3,5]		12	9		8		5	8
13	[2,3,6]		12	9			14	3	9
14	[2,4,5]		12		15	8		5	8
15	[2,4,6]		12		15		14	2	12
16	[2,5,6]		12			8	14	5	8
17	[3,4,5]			9	15	8		5	8
18	[3,4,6]			9	15		14	3	9
19	[3,5,6]			9		8	14	5	8
20	[4,5,6]				15	8	14	5	8

© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.14 (b): STAGE 2 SOLUTION

In stage 2, we assign car 2 having already assigned cars 4 and 3 to two of the six markets
\square The number of possible states $\underline{\underline{s}}_{2}$ is

$$
\frac{6!}{2!4!}=15
$$

For each state \underline{s}_{2}, we compute

$$
f_{2}^{*}\left(\underline{s}_{2}\right)=\min _{d_{2}}\left\{r_{2}\left(d_{2}\right)+f_{1}^{*}\left(\underline{s}_{1}\right)\right\},
$$

with d_{2} as one of the components of \underline{s}_{2} and \underline{s}_{1} as
the reduced vector without the d_{1} component

10.14 (b): STAGE 2 SOLUTION

state number	\underline{S}_{2}	value of f_{2} for decision d_{2}						d_{2}^{*}	\boldsymbol{f}_{2}^{*}
		1	2	3	4	5	6		
1	$[1,2,3,4]$	14	17	12	19			3	12
2	$[1,2,3,5]$	13	17	12		13		3	12
3	$[1,2,3,6]$	14	17	12			20	3	12
4	$[1,2,4,5]$	13	17		19	13		1,5	13
5	$[1,2,4,6]$	17	17		19		20	1,2	17
6	$[1,2,5,6]$	13	17			13	20	1,5	13
7	$[1,3,4,5]$	13		12	19	13		3	12
8	$[1,3,4,6]$	14		12	19		20	3	12
9	$[1,3,5,6]$	13		12		13	20	3	12
10	$[1,4,5,6]$	13			19	13	20	1, 5	13
11	$[2,3,4,5]$		18	13	20	15		3	13
12	[2, 3, 4, 6]		19	17	21		22	3	17
13	$[2,3,5,6]$		18	13		15	21	3	13
14	$[2,4,5,6]$		18		20	18	21	2, 5	18
15	$[3,4,5,6]$			13	20	15	21	3	13

© 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

10.14 (b): STAGE 3 SOLUTION

In stage 3, we assign car 3 having already assigned car 4 to one of the six markets
\square The number of possible states in stage 3 is

$$
\frac{6!}{5!1!}=6
$$

\square For each state \underline{s}_{3}, we compute

$$
f_{3}^{*}\left(\underline{s}_{3}\right)=\min _{d_{3}}\left\{r_{3}\left(d_{3}\right)+f_{2}^{*}\left(\underline{s}_{2}\right)\right\},
$$

with d_{3} as a component of \underline{s}_{3} and \underline{s}_{2} as the reduced vector without the component d_{3}

10.14 (b)

state number	\underline{S}_{3}	value of f_{3} for decision d_{3}						d_{3}^{*}	f_{3}^{*}
		1	2	3	4	5	6		
1	[1, 2, 3, 4, 5]	21	22	20	28	19		5	19
2	[1, 2, 3, 4, 6]	25	22	24	28		24	2	22
3	[1, 2, 3, 5, 6]	21	22	30		19	24	5	19
4	[1, 2, 4, 5, 6]	26	23		29	24	25	2	23
5	$[1,3,4,5,6]$	21		20	28	19	24	5	19
6	[2, 3, 4, 5, 6]		23	25	29	24	25	2	23

10.14 (b): STAGE 4 SOLUTION

In stage 4, car 4 is assigned to the market with the lowest return for all markets
\square There is a single state $\underline{s}_{1}=[1,2,3,4,5,6]$, for which the optimal decision d_{4}^{*} is determined

S_{4}	value of f_{4} for decision d_{4}						d_{4}^{*}	f_{4}^{*}
	1	2	3	4	5	6		
[1, 2, 3, 4, 5, 6]	32	30	31	33	29	30	5	29

10.14 (b): THE OPTIMAL SOLUTION

car	market	cost
4	5	7
3	4	10
2	3	5
1	1	7
total costs		29

© 2005-2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

