ECE 307 – Techniques for Engineering Decisions

Lecture 8. Dynamic Programming

George Gross

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

CE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

DP SOLUTION APPROACH The transition function measures amount of paper remaining at stage n $s_{n-1} = s_n - d_n L_n$ n = 2,3,4 $s_0 = s_1 - d_1 L_1$ and s_0 needs to be as close as possible to θ Therefore, we set $d_1 = \left[\frac{s_1}{L_1}\right]$ EXEMPT 2005-2019 George Gross, University of Ulinois at Urbana-Champaign, All Rights Reserved.

	DP SOLU	TION	APPF	ROAC	Н					
	Ve arbitrarily orde	er the <i>st</i>	ages and	l pick						
	stage n	1	2	3	4					
	length of order (ft)	2.5	4	3	2					
	□ We proceed backwards from <i>stage</i> 1 to <i>stage</i> 4									
a	nd we know that	Gross University o	f Illinois at Urbana	-Champaign All B	lights Reserved	64				

			DI	₽ S	OL	רט	ΓΙΟ	N:	S	TA (GE	1		
	Ĵ	f [*] ₁ (s	1)	= 1 0 ≤	$\max_{ \mathbf{d}_1 \leq \mathbf{d}_1 }$	5{ r	(s ₁ ,	, d ₁)	} =	: <i>№</i> 0 ≤ 0	$ax d_1 \leq 5$	{3.1	0 <i>d</i> ₁	}
	$d_1 \leq \left[\frac{13}{2.5}\right] = 5 \qquad \qquad R_1$													
d_1 S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-	-	-	3.10	3.10									►
2	-	-	-	-	-	6.20	6.20							
3	-	-	-	-	-	-	-	-	9.30	9.30				
4	-	-	-	-	-	-	-	-	-	-	12.40	12.40		
5	-	-	-	-	-	-	-	-	-	-	-	-	-	15.50
$f_{1}^{*}(s_{1})$	0	0	0	3.10	3.10	6.20	6.20	6.20	9.30	9.30	12.40	12.40	12.40	15.50
d_1^*	0	0	0	1	1	2	2	2	3	3	4	4	4	5
		ECI	E 307 ©	2005 - 20	19 Georg	ge Gross.	Universit	ty of Illin	iois at Ur	bana-Ch	ampaign.	All Rights	Reserved	1.

			D	P	SO	LU	ΤΙΟ	ON	: <i>S</i>	TA	GE	3		
			${f}_3^*$	(s ₃)	=	<i>may</i> ≤ d ₃ :	$ x_{\leq 4} \left\{ 2 \right\} $	4.40	<i>d</i> ₃ +	f_2^*	(s ₃ -	- 3 <u>d</u>	<pre>3)</pre>	
	$d_3 \leq \left[\frac{13}{3}\right] = 4 \qquad R_3$													
$d_3 \overset{S_3}{\checkmark}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	3.10	5.25	6.20	6.20	8.35	10.50	11.45	12.40	13.60	15.75	16.70
1	-	-	-	4.40	4.40	4.40	7.50	9.65	10.60	10.60	12.75	14.90	15.85	16.80
2	-	-	-	-	-	-	8.80	8.80	8.80	11.90	14.05	15.00	15.00	17.15
3	-	-	-	-	-	-	-	-	-	13.20	13.20	13.20	16.30	18.45
4	-	-	-	-	-	-	-	-	-	-	-	-	17.60	17.60
$f_{3}^{*}(s_{3})$	0	0	0	4.40	5.25	6.20	8.80	9.65	10.60	13.20	14.05	15.00	17.60	18.45
d_3^*	0	0	0	1	0	0	2	1	1	3	2	2	4	3
		E	CE 307	© 2005 -	2019 Ge	orge Gro	ss, Unive	rsity of II	linois at U	Jrbana-Cl	nampaign.	All Right	ts Reserve	d. 67

DP OPTIMAL SOLUTION

□ The *optimal* solution is obtained by retracing $f_1^*(s_1 = 0) = 0$ with $d_1^* = 0$ ↔ no rolls of 2.5 ft $f_2^*(s_2 = 4) = 5.25$ with $d_2^* = 1$ ↔ 1 roll of 4 ft $f_3^*(s_3 = 13) = 18.45$ with $d_3^* = 3$ ↔ 3 rolls of 3 ft $f_4^*(s_4 = 13) = 18.45$ with $d_4^* = 0$ ↔ no rolls of 2 ft ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

SENSITIVITY CASE

Consider the situation that, owing to an incorrect

measurement, in truth, there are only 11 ft

available for the rolls

□ We note that the solution for the original 13 *ft*

covers this possibility in the stages 1, 2 and 3

Gross, University of Illinois at Urbana-Champaign, All Rigl

but we need to re-compute the results of

stage 4, which we now call stage 4'

OPTIMAL CUTTING STOCK PROBLEM $f_{4''}^*(s_4 = 13) = 18.2 \text{ with } d_{4''}^* = 2 \iff 2 \text{ rolls of } 2 \text{ ft}$ $f_{3''}^*(s_3 = 9) = 13.2 \text{ with } d_{3''}^* = 3 \iff 3 \text{ rolls of } 3 \text{ ft}$ and since $s_2 = s_1 = 0$ $d_{2''}^* = 0 \iff 0 \text{ rolls of } 4 \text{ ft}$ $d_{1''}^* = 0 \iff 0 \text{ rolls of } 2.5 \text{ ft}$ \Box The additional constraint reduces the *optimum* from \$ 18.45 to \$18.2 and so lowers revenues \$.25 ECE 307 C 2005 - 2019 George Gross, University of Ulinois at Urbana-Champaign, All Rights Reserved.

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

PROACH
)

□ We formulate the problem as a *DP* and use a

backward process to solve

□ Each *stage* corresponds to a month

month	Oct	Nov	Dec	Jan	Feb	Mar
stage n	6	5	4	3	2	1

DP	SOLUTIC	DN: <i>STAGI</i>	E 1
$ \begin{cases} \mathbf{s}_{\boldsymbol{\theta}} = \boldsymbol{\theta} \\ \mathbf{D}_{1} = 20 \end{cases} \Rightarrow f_{1}^{*} (\mathbf{\theta}) $	$s_1 = 20,10$ $(s_1) = \min_{d_1} \{ q \}$	$or \ \theta \Rightarrow d_1^* = 0$ $b(d_1) + \theta = 0$	(0, 10 or 20) = $\phi(d_1^*)$
<i>S</i> ₁	20	10	0
<i>d</i> [*] ₁	0	10	20
$f_{1}^{*}(s_{1})$	0	48	86

14

	D	P SC	DLUI		ST.	4GE	2	
$f_{2}^{*}(s)$	$s_1 = s$ $s_2) = m$	$\frac{1}{2} + \frac{d_2}{d_2}$ $\int_{\frac{d_2}{2}} \frac{d_2}{d_2}$	-30 so $\phi(d_2)$	since + 0.2	$D_2 = s_2 + d$	$30_{2} - 30_{2}$] + f	$\binom{*}{1}(s_1)$
C C			d	2			d*	$f^*(\mathbf{c})$
3 ₂	0	10	20	30	40	50	<i>a</i> ₂	$J_{2}(s_{2})$
0				204	188	164	50	164
10			172	168	142		40	142
20		134	136	122			30	122
30	86	98	90				0	86
40	50	52					0	50

	D	P SC	DLUT		ST.	4 <i>GE</i>	3	
$f_{3}^{*}($	$s_2 = \frac{1}{2}$	$ s_3 + d_3 \\ min \begin{cases} \phi \\ d_3 \end{cases} $	-40	since - 0.2[<u>s</u>	$D_3 = \frac{D_3 + d_3}{s_2}$	40 0	$+f_{2}^{*}($	(s_2)
S			d	3			<i>d</i> *	f *(c)
³ ³	0	10	20	30	40	50	<i>u</i> ₃	J ₃ (3)
0					302	304	40	302
10				282	282	286	30, 40	282
20			250	262	264	252	20	250
30		212	230	244	230	218	10	212
40	164	192	212	210	196		0	164

	D	P S	OLU [.]	ΓΙΟΝ	: <i>ST</i>	AGE	4						
	$s_3 = s_3$	$s_4 + d_4$	- 30	since	$D_4 =$	30							
$f_4^*($	$(s_4) = 1$	$min_{d_4} \left\{ \phi \right\}$	¢(<mark>d</mark> ₄) +	- 0.2[<u>s</u>	$\frac{4}{s_3} + \frac{d_4}{s_3}$	- 30	$+ f_{3}^{*}$	(s ₃) }					
C		d_4 d^* $f^*(s)$											
°4	0	10	20	30	40	50	4	$J_{4}(3_{4})$					
0				420	422	414	50	414					
10			388	402	392	384	50	384					
20		350	370	372	362	332	50	332					
30	302	332	340	342	310		0	302					
40	284	302	310	290			0	284					

	D	P SC	DLUT		ST.	4 <i>GE</i>	5	
	$s_4 = s_4$	$s_5 + d$	₅ - 20	since	$D_{5} =$	= 20		
f_5^*	$(\mathbf{s}_5) = \mathbf{b}$	min{	$(d_5) +$	0.2[<u>s</u>	$\frac{5}{s_4} + \frac{d_5}{s_4}$	- 20	$+ f_{5}^{*}($	(s_5)
S			d	5			<i>d</i> *	$f^*(\mathbf{s})$
° 5	0	10	20	30	40	50	<i>u</i> ₅	$J_{5}(s_{5})$
0			500	504	474	468	50	468
10		462	472	454	446	452	40	446
20	414	434	422	426	430		0	414
30	386	384	394	410			10	384
40	336	356	378				0	336

	D	P SC	DLUT	ION	ST.	4 <i>GE</i>	6	
	$D_6 =$	40 an	ds ₆	= 0				
	s ₅ =	$s_6 + d$	₆ – 40	$= d_{6}$	- 40			
<i>f</i> [*] ₆ ($(s_6) =$	$\min_{\substack{d_6}} \left\{ \right\}$	φ(<mark>d</mark> ₆)	+ 0.2[$\underline{s_6 + a}$	$\frac{1}{5} - 40$	$\left[\right] + f$	$\left\{ s_{5}^{*}(s_{5}) \right\}$
<i>d</i> ₆	0	10	20	30	40	50	d_6^*	${f}_6^*({ extsf{s}_6})$
$f_6(s_6)$					606	608	40	606
$d_{6}^{*}=40$	$\Rightarrow d_5^*$	=50 =	$\Rightarrow d_4^* =$	$0 \Rightarrow d$	$\frac{1}{3} = 40:$	$\Rightarrow d_2^* =$	= 50 ⇒	$d_1^* = \theta$

MUTUAL FUND INVESTMENT STRATEGIES

□ We consider a 5-year investment of

 \circ 10 k\$ invested in year 1

• 1 k\$ invested in each year 2, 3, 4 and 5 into

2 mutual funds with different yields for both

the short-term (1 year) and the long-term (up

to 5 years)

□ The decision on the allocation of investment in

each fund is made at the beginning of each year

MUTUAL FUND INVESTMENT STRATEGIES

□ We operate under the following protocol:

- O each fund returns short-term dividends and long-term dividends
- O once invested, the money cannot be withdrawn until the end of the 5 – year period
- all short-term gains may either be reinvested in one of the two funds, or withdrawn; in the latter case, the withdrawn funds earn no further interest

Our objective is to maximize the total returns at the end of 5 years ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

MUTUAL FUND INVESTMENT STRATEGIES

□ The earnings on the investment are

O LTD : the long-term dividend specified as %/

year return on the accumulated capital

O *STD* : the short–term interest dividend

returned as cash to the investor at the

end of the period; cash may be invested

in either fund and any money not

invested earns no return

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

MUTUAL FUND INVESTMENT PARAMETERS

6			LTD			
jund	1	2	3	4	5	rate I
A	0.02	0.0225	0.0225	0.025	0.025	0.04
В	0.06	0.0475	0.05	0.04	0.04	0.03

DP SOLUTION METHOD

• for the stage 6 - n + 1, the STDs are augmented by \$1,000
\$s_{n-1} = d_n i_A + (s_n - d_n)i_B + 1,000 n = 2,3,4,5
• For the stage 5, we have the initial investment
\$s_5 = 10,000

DP SOLUTION: STAGE 2

$$\Box \text{ We select } d_{2}^{*} \text{ to maximize}$$

$$f_{2}^{*}(s_{2}) = \max_{d_{2}} \{r_{2} + f_{1}^{*}(s_{1})\}$$

$$= \max_{0 \leq d_{2} \leq s_{2}} \{d_{2}(.0207) + 1.0609s_{2} + 1.07[.04s_{2} + d_{2}(-.015) + 1,000]\}$$

$$= \max_{d_{2}} \{d_{2}(1.04^{2} - 1.03^{2}) + s_{2}(1.03)^{2} + f_{1}^{*}(s_{1})\}$$

$$= \max_{d_{2}} \{d_{2}(1.04^{2} - 1.03^{2}) + s_{2}(1.03)^{2} + f_{1}^{*}(s_{1})\}$$

$$= \max_{d_{2}} \{d_{2}(.0046) + 1.1037s_{2} + 1,070\}$$

$$d_{2}^{*} = s_{2} \text{ with } f_{2}^{*}(s_{2}) = 1.108s_{2} + 1,070$$
ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champign, All Rights Reserved.

DP SOLUTION: STAGE 3

 $\Box \text{ We select } d_{3}^{*} \text{ to maximize}$ $f_{3}^{*}(s_{3}) = \max_{d_{3}} \left\{ r_{3} + f_{2}^{*}(s_{2}) \right\}$ $= \max_{d_{3}} \left\{ \frac{d_{3}(1.04^{3} - 1.03^{3}) + s_{3}(1.03)^{3} + 1}{1.108s_{2} + 1,070} \right\}$ $= \max_{0 \le d_{3} \le s_{3}} \left\{ 2,178 + 1.1481s_{3} + .0018d_{3} \right\}$ $d_{3}^{*} = s_{3} \quad \text{with} \quad f_{3}^{*}(s_{3}) = 1.15s_{3} + 2,178$ ECE 307 C 2005 - 2019 George Gross, University of Ellipsis at Urbana-Champeign, All Rights Reserved.

DP SOLUTION: STAGE 4

$$\Box \text{ We select } d_{4}^{*} \text{ to maximize}$$

$$f_{4}^{*}(s_{4}) = \max_{d_{4}} \left\{ r_{4} + f_{3}^{*}(s_{3}) \right\}$$

$$= \max_{d_{4}} \left\{ d_{4} (1.04^{4} - 1.03^{4}) + s_{4} (1.03)^{4} + 1.15s_{3} + 2,178 \right\}$$

$$= \max_{0 \leq d_{4} \leq s_{4}} \left\{ 3328 + 1.1772s_{4} + .0156d_{4} \right\}$$

$$d_{4}^{*} = s_{4} \quad \text{with} \quad f_{4}^{*}(s_{4}) = 1.193s_{4} + 3,328$$
ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

optimal return at end of 5 years is 16,927 using the following strategy

beginning of year	investment in	
	fund A	fund B
1	10,000	0
2	STD returns + 1,000	0
3	STD returns + 1,000	0
4	STD returns + 1,000	0
5	0	STD returns + 1,000