ECE 307 – Techniques for Engineering Decisions

Lecture 7. Dynamic Programming

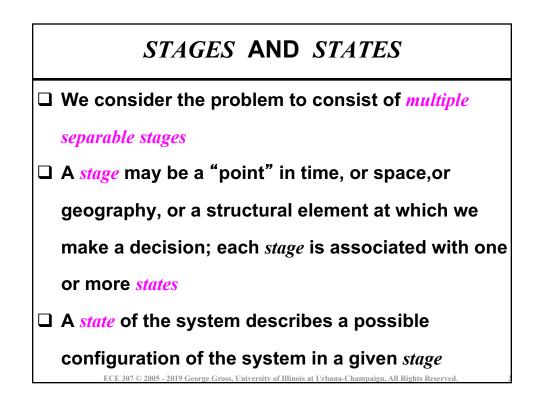
George Gross

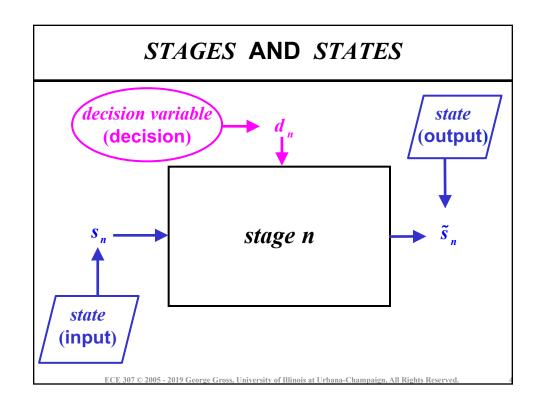
Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

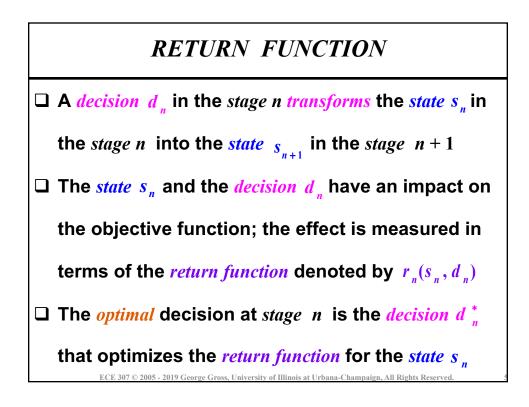
ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

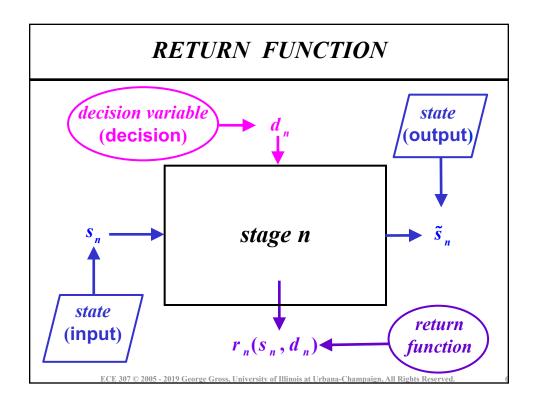
DYNAMIC PROGRAMMING

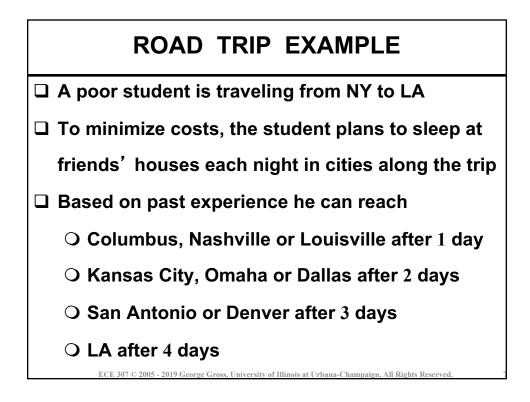
Systematic approach to solving *sequential decision*

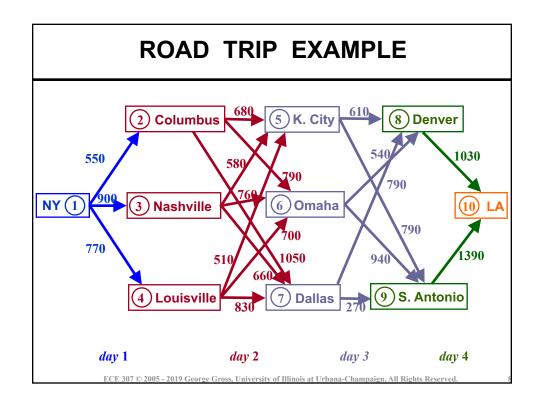

making problems

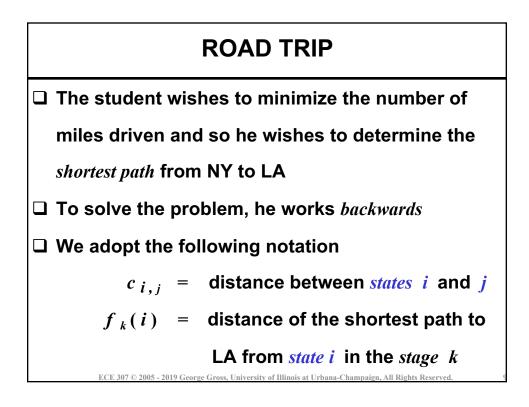

□ Salient problem characteristic: ability to *separate*

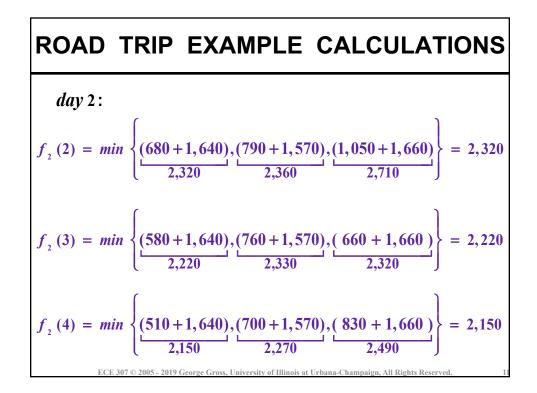

the problem into stages

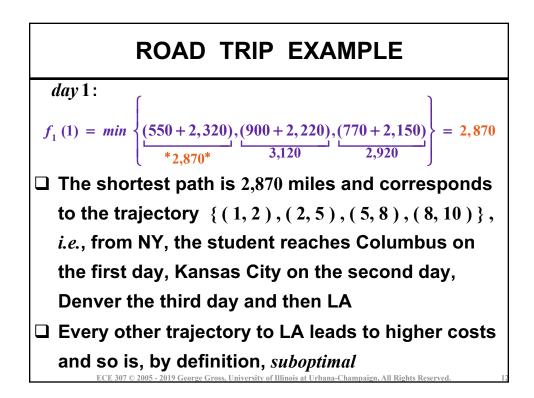

□ *Multi-stage* problem solving technique

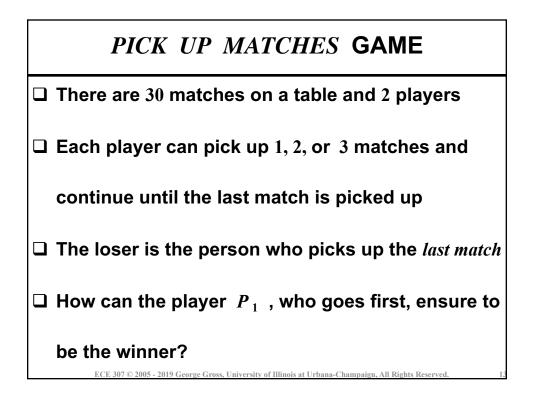

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.









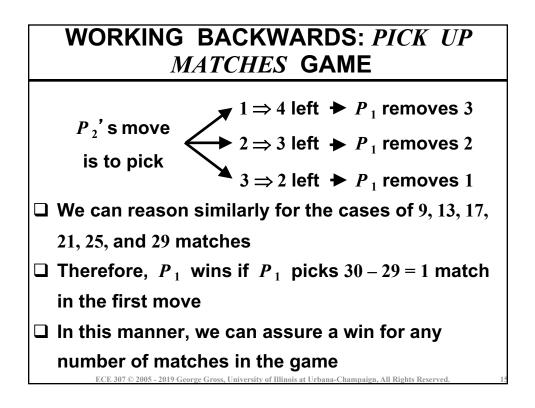


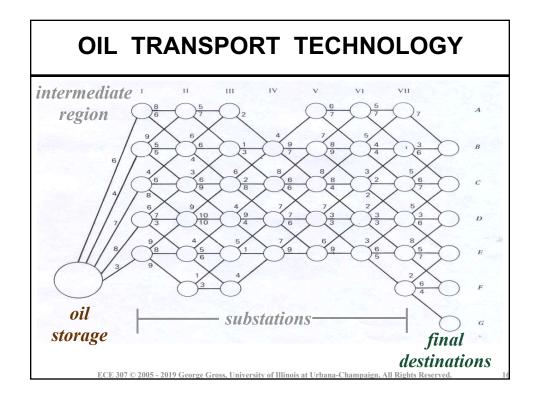
ROAD	TRIP EX	XAMPLE	CALCULATION
			$f_4(9) = c_{9,10} = 1,39$
day 3: f_3	$(5) = min \left\{ \right.$	$(610+1,030) \\ 1,640$	$, \underbrace{(790+1, 390)}_{2,180} = 1,64$
f_{3}	$(6) = min \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	(540+1,030) 1,570	$, \underbrace{(940+1, 390)}_{2,330} = 1,57$
f_{3}	$(7) = min \begin{cases} 307 @ 2005 - 2019 George 0 \end{cases}$	(790 + 1,030) 1,820 Gross, University of Illinois at U	$\left. \underbrace{(270+1,390)}_{1,660} \right\} = 1,66$

WORKING BACKWARDS: PICK UP MATCHES GAME

□ We solve this problem by reasoning in a back-

wards fashion so as to ensure that when a single


match remains, P_2 has the turn


Consider the situation where 5 matches remain

and it is P_2 's turn; for P_1 to win, we consider all

2019 George Gross, University of Illinois at Urbana-Champaign, All Rights

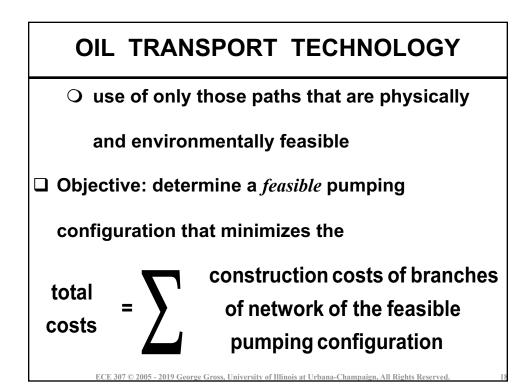
possible situations:

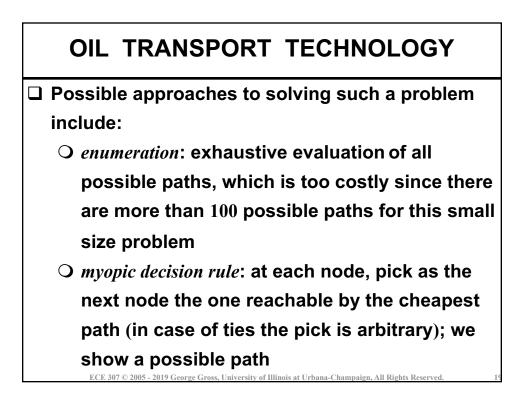
OIL TRANSPORT TECHNOLOGY

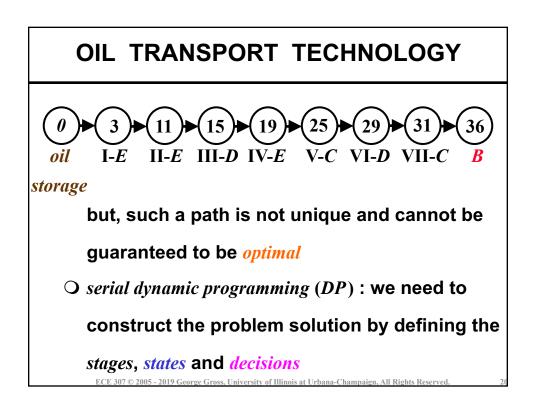
U We consider the development of a transport

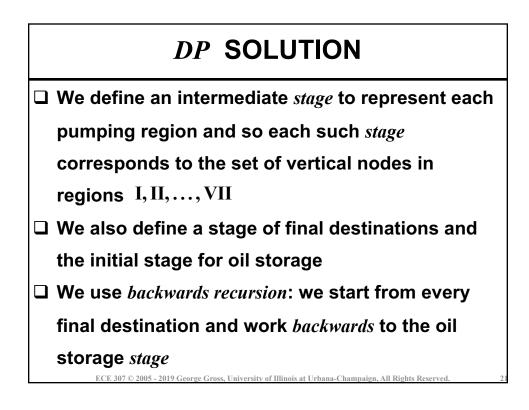
network from the north slope of Alaska to one of 6

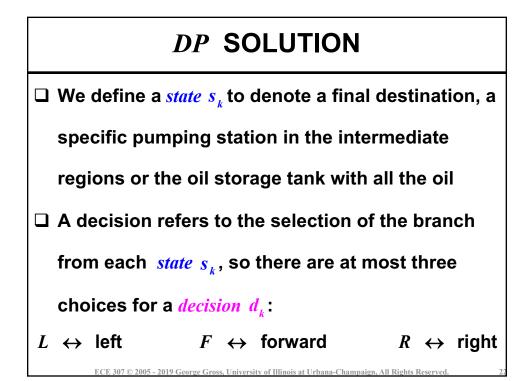
possible shipping points in the US

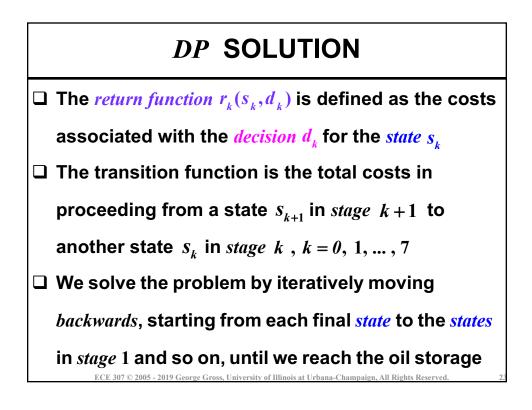

□ The network must meet the problem feasibility

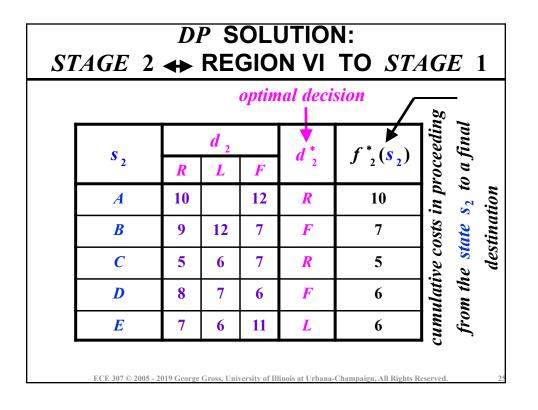

requirements:

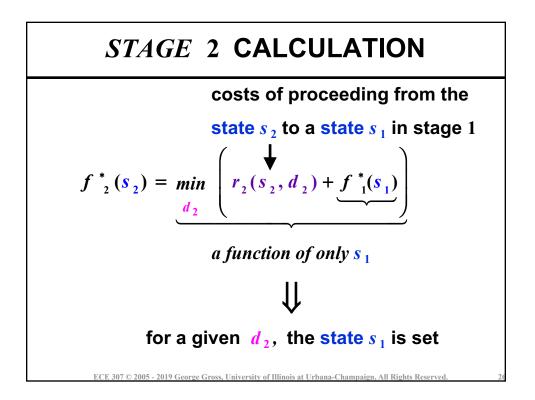

O 7 pumping stations from a north slope ground

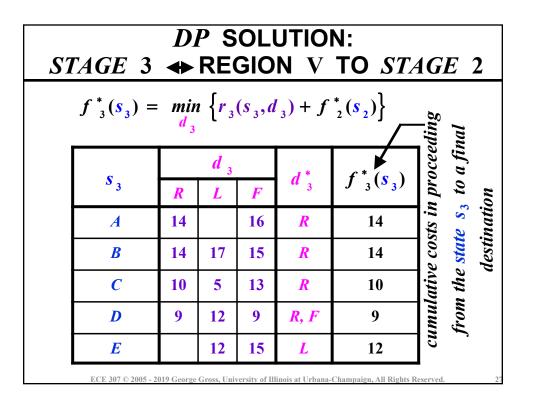

storage plant to a shipping port

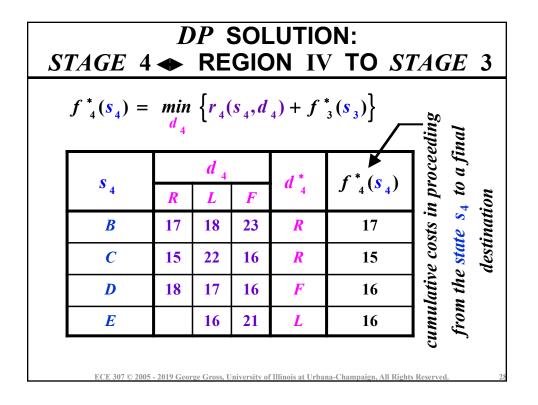




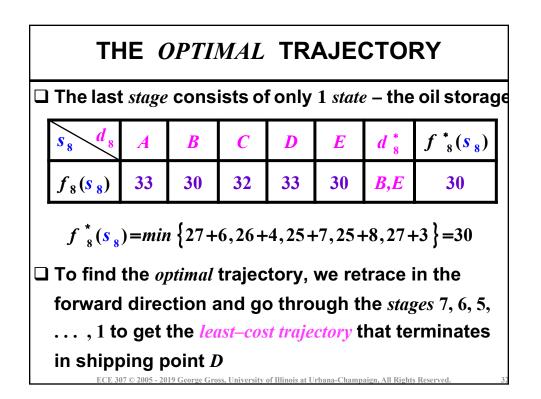


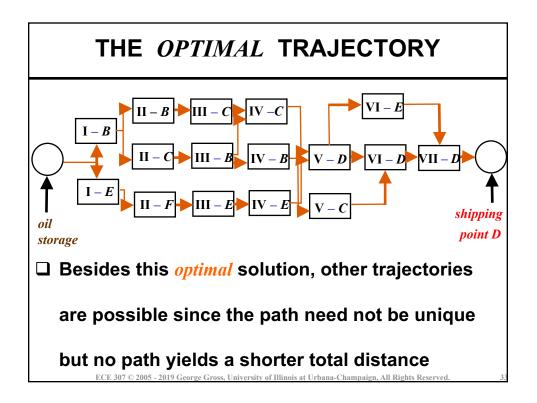






<i>d</i> ₁	al dec	cision		optimal return
<i>d</i> ₁ <i>L</i>				
L	_	1*	$f_{1}^{*}(s_{1})$	
	F	• 1	J 1 (51)	ding o a
		R	7	ceeu S ₁ t tion
	3	F	3	pro ate tina
5	6	L	5	ts in e st des
5	3	F	3	least costs in proceeding from the state s ₁ to a final destination
8	5	F	5	least froi f
2	6	L	2	
	5 8 2	5 6 5 3 8 5 2 6	5 6 L 5 3 F 8 5 F 2 6 L	5 6 L 5 5 3 F 3 8 5 F 5





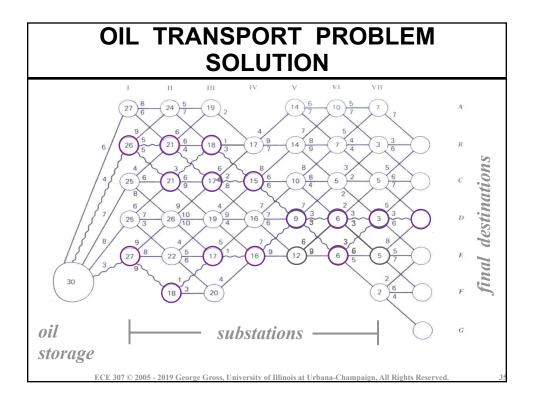
ST			REC	SIOI		TO ST	AGE 4
	$f_{5}^{*}(s_{5})$	= m	in {r _: 5	₅ (s ₅ ,	$d_{5}) + f_{5}$	$f_{4}^{*}(s_{4})$	ing Il
	<i>s</i> 5		<i>d</i> ₅		<i>d</i> *	$\int_{-5}^{*} (s_{5})$	cumulative costs in proceeding from the state s ₅ to a final destination
	~ 5	R	L	F	* 5	J 5 (2 5)	proc to a 1
	A	19			R	19	in _I S ₅ utior
	В	18		18	R , F	18	e costs in p state s ₅ 1 destination
	С	24	23	17	F	17	ve c e si des
	D	20	19	25	L	19	ulati n th
	E		21	17	F	17	fron
	F		20		L	20	5.
	ECE 307 © 2005 -	2019 George	Gross, Univ	versity of II	linois at Urbana-	Champaign, All Rights R	eserved. 29

$DP \text{ SOLUTION:}$ $STAGE \ 6 \iff \text{REGION II TO STAGE 6}$ $f_{6}^{*}(s_{6}) = \min \left\{ r_{6}(s_{6}, d_{6}) + f_{5}^{*}(s_{5}) \right\}$											
S ₆	R	<i>d</i> ₆	F	d_{6}^{*}	$f_{6}^{*}(\mathbf{S}_{6})$	cumulative costs in proceeding from the state s ₆ to a final destination					
A	25		24	F	24	n pro 6 to ion					
В	21	25	24	R	21	e costs in p state s ₆ t destination					
С	28	21	23	L	21	ve co e <mark>sta</mark> dest					
D	27	26	29	L	26	lativ n th					
E	26	23	22	F	22	umu froi					
F		18	23	L	18	J					

<i>S</i> 7	TAGE 6				UTIO N II	N: TO <i>ST</i> .	4 <i>GE</i> 6
	$f_{7}^{*}(s_{7}) =$	= min d ₇	<i>n</i> { <i>r</i> ₇ ((<i>s</i> ₇ , <i>d</i>	$(f_{7}) + f$	* ₆ (s ₆)}	cumulative costs in proceeding from the state s ₇ to a final destination
	S		d ₇		1*	$\int_{7}^{*} (s_{7})$	umulative costs in proceediv from the state s ₇ to a final destination
	<i>s</i> ₇	R	L	F	d_{7}^{*}	$J_{7}(s_{7})$	t pro to
	A	27		32	R	27	ts in e s ₇ nati
	В	26	33	26	R , F	26	e costs in p state s ₇ t destination
	С	34	25	27	L	25	ative the a
	D	25	27	33	R	25	nul
	E	27	35	30	R	27	t cu
	ECE 307 © 2005 -	2019 George	Gross, Uni	versity of II	linois at Urbana-	-Champaign, All Rights R	eserved. 31

OIL TRANSPORT PROBLEM SOLUTION

□ We obtain the diagram below by retracing the


steps of proceeding to an endpoint at each stage

- The solution
 - **O** provides all the *optimal trajectories*
 - **O** is based on logically breaking up the problem

into *stages* with calculations in each *stage* being

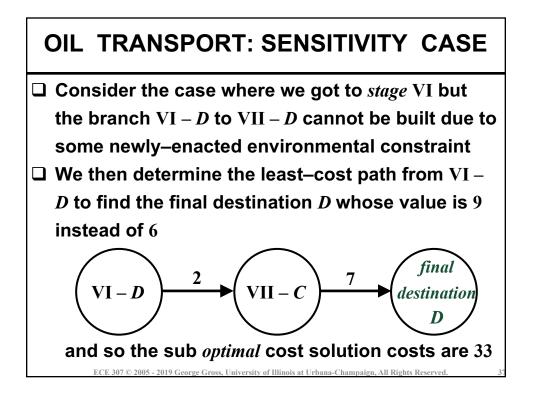
a function of the number of *states* in that *stage*

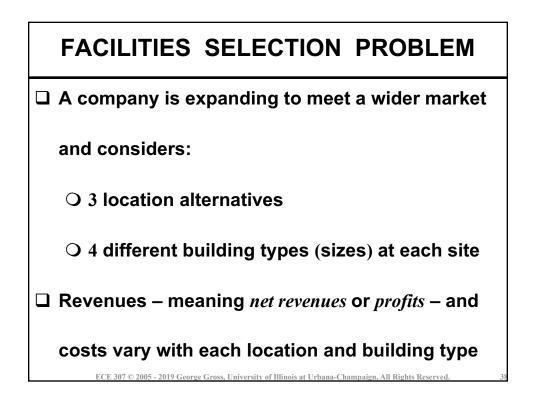
O provides also all the *suboptimal paths*

OIL TRANSPORT PROBLEM SOLUTION

For example, we may calculate the least cost

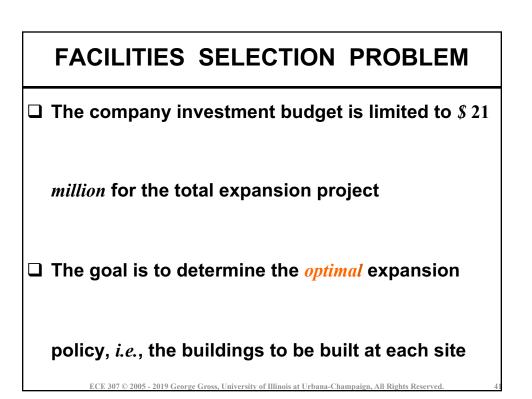
optimal path to any sub-optimal shipping point


different than D


□ From the solution, we can also determine the *sub*-

optimal path if the construction of a feasible path

ECE 307 © 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign,


is not undertaken

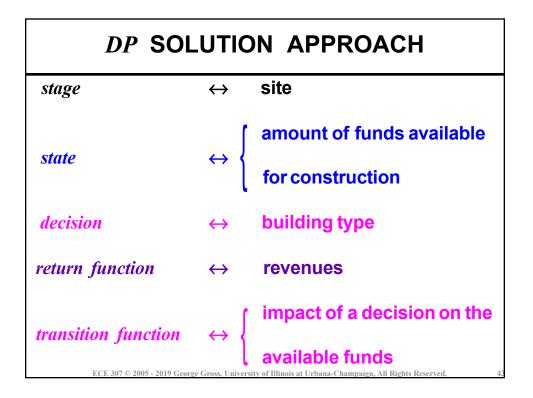
FACILITIES SELECTION PROBLEM											
building size											
site	В	1	В	<i>B</i> ₂		B ₃		B ₄		one	
sile	R ₁	<i>c</i> ₁	R_2	<i>c</i> ₂	R_3	<i>c</i> ₃	R ₄	<i>c</i> ₄	R ₀	c ₀	
Ι	0.50	1	0.65	2	0.8	3	1.4	5	0	0	
Π	0.62	2	0.78	5	0.96	6	1.8	8	0	0	
Ш	0.71	4	1.2	7	1.6	9	2	11	0	0	
	ECE 307	0 2005 - 201	9 George Gro	oss, Universit	y of Illinois a	nt Urbana-C	hampaign, All	Rights Rese	rved.	4(

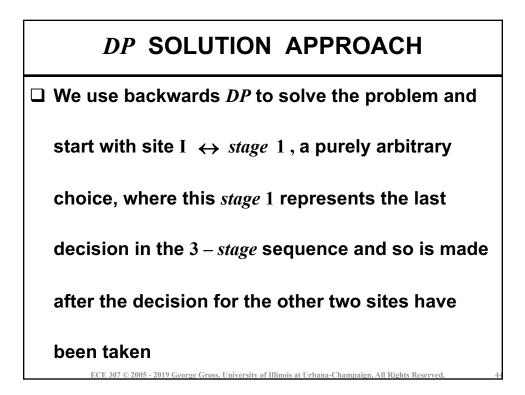
DP SOLUTION APPROACH

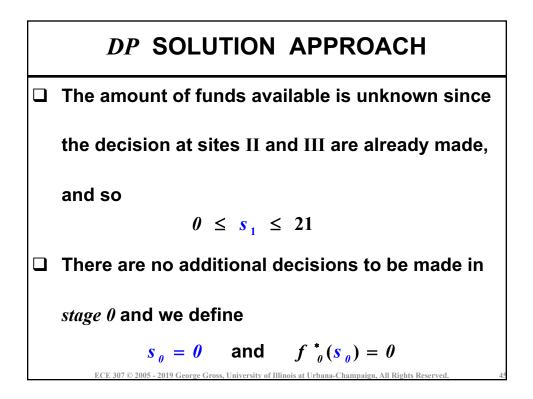
□ We use the *DP* approach to solve this problem, but

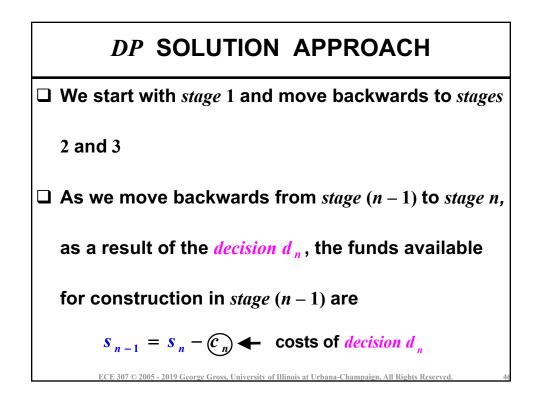
first, we must define the *DP* structure elements

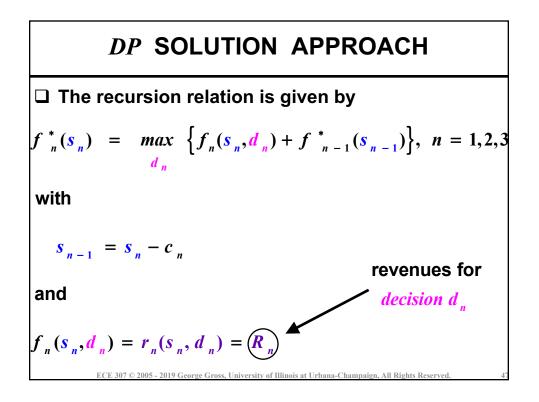
□ For the facilities siting problem, we realize that

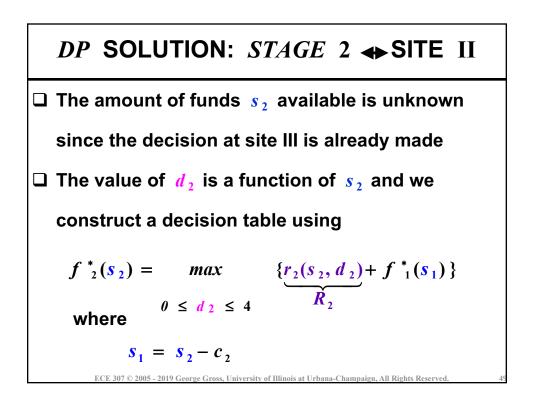

absent the choice of a site, the building type is


irrelevant and so the elements that control the

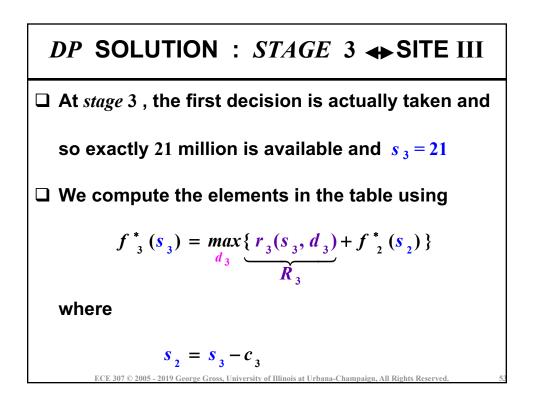

Gross, University of Illinois at Urbana-Champaig

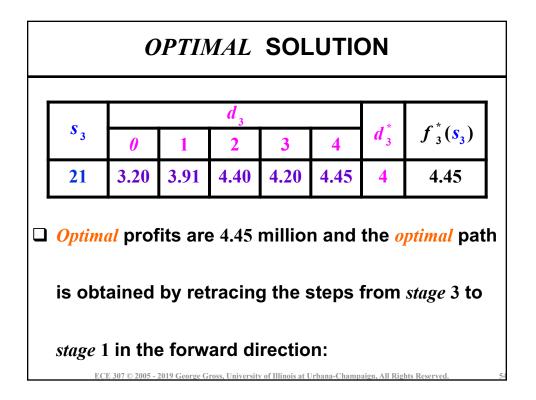

entire decision process are the *building sites*

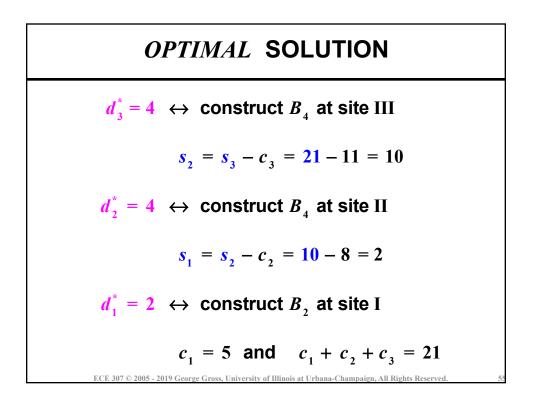

21

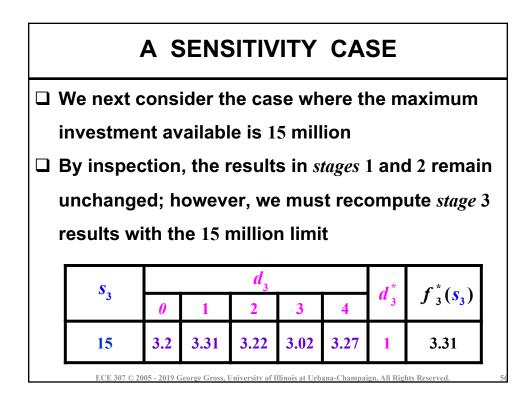


DP S	DP SOLUTION: STAGE 1 \Leftrightarrow SITE I										
$f_{1}^{*}(s_{1}) = \max_{\substack{0 \leq d_{1} \leq 4}} \frac{\{r_{1}(s_{1}, d_{1})\}}{R_{1}}$											
s_1	0	1	2	3	4	d_{1}^{*}	$f_{1}^{*}(\mathbf{s}_{1})$				
$21 \ge s_1 \ge 5$	0	.50	.65	.80	1.40	4	1.40				
$4 \ge s_1 \ge 3$	0	.50	.65	.80		3	.80				
2	0	.50	.65			2	.65				
1	0	.50				1	.50				
0	0	0	0	0	0	0	0				
ECE 307	7 © 2005 - 20	19 George Gros	ss, University of	f Illinois at Ur	bana-Champai	gn, All Rights	Reserved. 4				


DP SOLUTION: STAGE 2 \Leftrightarrow SITE II									
$s_2 d_2$	0	1	2	3	4	$d_{\frac{1}{2}}$	$f_{2}^{*}(s_{2})$		
$21 \geq s_2 \geq 13$	1.40	2.02	2.18	2.36	3.20	4	3.20		
12	1.40	2.02	2.18	2.36	2.60	4	2.60		
11	1.40	2.02	2.18	2.36	2.60	4	2.60		
10	1.40	2.02	2.18	1.76	2.45	4	2.45		
9	1.40	2.02	1.58	1.61	2.30	4	2.30		
8	1.40	2.02	1.58	1.61	1.80	1	2.02		
7	1.40	2.02	1.43	1.46		1	2.02		
6	1.40	1.42	1.28	0.96		1	1.42		
5	1.40	1.42	0.78			1	1.42		
4	0.80	1.27				1	1.27		
3	0.80	1.12				1	1.12		
2	0.65	0.62				0	0.65		
1	0.50					0	0.50		
0	0.00					0	0.00		
ECE 307 © 2005 -	2019 Georg	e Gross, Univ	versity of Illi	nois at Urbai	na-Champai	gn, All Right	s Reserved. 5		


SAMPLE CALCULATIONS


□ Consider the case $s_2 = 10$ and $d_2 = 0$; then, $c_2 = 0$ and $R_2 = 0$ and so, $s_1 = 10$ and $d_1^* = 4$ □ Therefore, $f_1^*(s_1) = 1.4$ and consequently, $f_2(s_2) = 1.4$


2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights I

SAMPLE CALCULATIONS Consider next the case $s_2 = 10$ and $d_2 = 4$; then, $c_2 = 8$ and $R_2 = 1.8$ and so, $s_1 = 2$ so that $f_1^*(s_1) = 0.65$ Consequently, $f_2(s_2) = 2.45$ which we can show is the optimal value, so that $f_2^*(s_2) = 2.45$ EXEMPLE CALCULATIONS

SENSITIVITY CASE

□ The *optimal* solution obtains maximum profits of 3.31 million and the decision is as follows: $d_3^* = 1 \iff \text{construct } B_1 \text{ at site III}$ $s_2 = s_3 - c_3 = 15 - 4 = 11$ $d_2^* = 4 \iff \text{construct } B_4 \text{ at site II}$ $s_1 = s_2 - c_2 = 11 - 8 = 3$ $d_1^* = 3 \iff \text{construct } B_3 \text{ at site I}$ $c_1 = 3 \text{ and } c_1 + c_2 + c_3 = 15$ ECE 307 C 2005 - 2019 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.